. 24/7 Space News .
TECH SPACE
Scientists create 'impossible' materials in simple way
by Staff Writers
Bonn, Germany (SPX) Aug 03, 2018

File illustration a iron-nitrogen complex

Scientists from NUST MISIS and colleagues from the University of Bayreuth, the University of Munster (Germany), the University of Chicago (U.S.), and Linkoping University (Sweden) have created nitrides, a material previously considered impossible to obtain.

More amazing, they have shown that the material can be obtained using a very simple method of direct synthesis. Articles about the revolutionary research results have been published in Nature Communications and Angewandte Chemie International Edition.

Nitrides are actively used in superhard coatings and electronics. Usually, the nitrogen content in these materials is low, and it is therefore difficult to get the nitrogen levels to exceed the levels of transition metals (as the nitrogen bonds are too high energy).

Compounds rhenium and iron, which the researchers chose for the experiments, embody this problem particularly well. As such, the researchers decided to change the synthesis from ordinary conditions on Earth to a condition of ultra-high pressure.

"This method is one of the most promising ways to create new high quality materials, and it opens up fantastic opportunities. There are well-known examples like artificial diamonds and cubic boron nitride (CBN), which existed in a natural form. However the idea to consciously create materials that are impossible [to make] in nature is our know-how", commented Igor Abrikosov, Head of the NUST MISIS Laboratory for the Modelling and Development of New Materials.

According to Abrikosov, the experiments produced results almost immediately. Nitrogen, together with a transition metal, is placed into a diamond anvil cell, and a simple direct synthesis is carried out under high pressure.

"Rhenium nitride has a characteristic of low compressibility, so it potentially has very high mechanical characteristics and the characteristic of superhardness - which is important, for example, in improving the quality of cutting tools", Abrikosov added.

Abrikosov believes the research group will later clarify whether the materials are superconductors or magnets, and whether they are suitable for spintronics.

Their backward chaining requires more experimental facilities for further analysis. Those facilities are already underway however, and are likely to bear fruit within the next year.

If the research team proves the material's assumed superhardness, then within 5 years we will be able to see the "impossible" materials being used in commercial fields.

Research paper


Related Links
National University of Science and Technology
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Root vegetables to help make new buildings stronger, greener
Washington (UPI) Jul 27, 2018
In effort to make new construction greener and stronger, engineers and material scientists are turning to beets and carrots. Researchers have combined Portland cement with nanoplatelets extracted from root vegetable fibers to produce a stronger, more eco-friendly building material. "The composites are not only superior to current cement products in terms of mechanical and microstructure properties but also use smaller amounts of cement," lead researcher Mohamed Saafi from Lancaster University s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA, Commercial Partners Progress to Human Spaceflight Home Stretch

Engine flaw delays Boeing test of crew capsule to 2019

Cygnus concludes 9th Cargo Supply Mission to Space Station

Space tourism economics - financing and regulating trips to the final frontier

TECH SPACE
First SLS Core Stage flight hardware complete, ready for joining

Space-X forced to push back test launch dates

NASA Selects US Firms to Provide Commercial Suborbital Flight Services

NASA certifies Russia's RD-180 rocket engines for manned flights

TECH SPACE
Scientists looking for ways to grow crops on Red Planet

Mars Dust Storm May Have Peaked

Students can now build their own rover model

Mars terraforming not possible using present-day technology

TECH SPACE
Growing US unease with China's new deep space facility in Argentina

China developing in-orbit satellite transport vehicle

PRSS-1 Satellite in Good Condition

China readying for space station era: Yang Liwei

TECH SPACE
Seventh set of Iridium NEXT satellites performing well during pre-operational testing

Thales and SSL form consortium to further design and develop Telesat's LEO constellation

Telesat signs consortium deal with Thales and SSL new LEO constellation

We'll soon have ten times more satellites in orbit - here's what that means

TECH SPACE
Sea Giraffe radar selected for USNS Herschel 'Woody' Williams

Into The Void: hyper-real 'Star Wars' VR makes you the hero

US 'crypto-anarchist' sees 3D-printed guns as fundamental right

Lasers write better anodes

TECH SPACE
NASA's TESS spacecraft starts science operations

How Can You Tell If That ET Story Is Real

WSU researcher sees possibility of moon life

X-ray Data May Be First Evidence of a Star Devouring a Planet

TECH SPACE
New Horizons team prepares for stellar occultation ahead of Ultima Thule flyby

High-Altitude Jovian Clouds

'Ribbon' wraps up mystery of Jupiter's magnetic equator

The True Colors of Pluto and Charon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.