. 24/7 Space News .
EXO LIFE
Science at cusp of 'transformational' grasp of life via cell modeling
by Staff Writers
Lawrence KS (SPX) Oct 06, 2016


The image from co-author Arthur Olson's lab at the Scripps Research Institute shows a preliminary model of mycoplasma mycoides. Modeling by Ludovic Autin and David Goodsell, rendering by Adam Gardner. Image courtesy The Scripps Research Institute. For a larger version of this image please go here.

A paper recently published in the Journal of Molecular Biology shows how advances in molecular biology and computer science around the world soon may lead to a three-dimensional computer model of a cell, the fundamental unit of life. According to the authors, the development could herald a new era for biological research, medical science, and human and animal health.

"Cells are the foundation of life," said Ilya Vakser, professor of computational biology and molecular biosciences and director of the Center for Computational Biology at the University of Kansas, one of the paper's co-authors. "Recently, there has been tremendous progress in biomolecular modeling and advances at understanding life at the molecular level. Now, the focus is shifting to larger systems - up to the level of the entire cell. We're trying to capture this emerging milestone development in computational structural biology, which is the tectonic shift from modeling individual biomolecular processes to modeling the entire cell."

The study, titled "Challenges in structural approaches to cell modeling," surveys a range of methodologies joining the march toward a simulated whole 3-D cell, including the studies of biological networks, automated construction of 3-D cell models with experimental data, modeling of protein complexes, prediction of protein interactions, thermodynamic and kinetic effects of crowding cellular membrane modeling, and modeling of chromosomes.

"A lot of techniques that are required for this are already available - it's just a matter of putting them all together in a coherent strategy to address this problem," Vakser said. "It's hard because we're just beginning to understand the principal mechanisms of life at the molecular level - it looks extremely complicated but doable, so we're moving very fast - not only in our ability to understand how it works at the molecular level but to model it."

While most of these techniques are being developed separately, the authors say that considered together they represent a push forward that could provide a better basic "understanding of life at the molecular level and lead to important applications to biology and medicine."

"There are two major benefits," Vakser said. "One is our fundamental understanding of how a cell works. You can't claim you understand a phenomenon if you can't model it. So this gives us insight into basic fundamentals of life at the scale of an entire cell. On the practical side, it will give us an improved grasp of the underlying mechanisms of diseases and also the ability to understand mechanisms of drug action, which will be a tremendous boost to our efforts at drug design. It will help us create better drug candidates, which will potentially shorten the path to new drugs."

As an example, the KU researcher said a working 3-D molecular cell model could help to replace or augment phases of time-consuming and expensive drug development protocols required today to bring drug therapies from the scientist's bench to the marketplace.

Vakser said that facets of the research that could lead to a computer-simulated cell are at different levels of refinement.

"We've made advances in our ability to model protein interactions," he said. "The challenge is to put it in context of the cell, which is a densely populated milieu of different proteins and other biomolecular structures. To make the transition from a dilute solution to realistic environment encountered in the cell is probably the greatest challenge we're facing right now."

While modeling more complex human cells might be on the agenda soon, Vakser said that for the time being, research efforts will focus on modeling simple single-celled organisms.

"We go for the simplest cell possible. There are small prokaryotic cells, which involve minimalistic set of elements that are much simpler than the bigger and more complicated cells in mammals, including humans," he said. "We're trying to cut our teeth on the smallest possible cellular organisms first, then will extrapolate into more complicated cells."

Along with Vakser, the paper's authors are Wonpil Im of Lehigh University, Jie Liang of the University of Illinois at Chicago, Arthur Olson of The Scripps Research Institute and Huan-Xiang Zhou of Florida State University.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Kansas
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EXO LIFE
New research undermines 'RNA world' of early evolution
San Diego (UPI) Sep 29, 2016
Did RNA evolve DNA, or did the two emerge simultaneously? Until recently, most scientists suggested the former, but new research undermines the theory, inspiring a team of scientists to suggest a second, alternative RNA-DNA origin story. The idea that primordial Earth hosted an RNA-only chapter of evolution prior to the emergence of DNA is known as the "RNA world" hypothesis. A series o ... read more


EXO LIFE
A facelift for the Moon every 81,000 years

Exploration Team Shoots for the Moon with Water-Propelled Satellite

Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

EXO LIFE
Schiaparelli readied for Mars landing

Opportunity at First Science Spot of its 10th Extended Mission

NASA's Opportunity Rover to Explore Mars Gully

How Mars' moon Phobos came to look like the Death Star

EXO LIFE
Growing Interest: Students Plant Seeds to Help NASA Farm in Space

NASA begins tests to qualify Orion parachutes for mission with crew

New Zealand government open-minded on space collaboration

Students team up with NASA for space coms and navigation

EXO LIFE
Closing windows on Shenzhou 11

China getting ready for Shenzhou 11 launch

China to launch world's first X-ray pulsar navigation satellite

From nothing to glory in six decades - China's space program

EXO LIFE
Hurricane Nicole delays next US cargo mission to space

Roscosmos Sets New Date for Soyuz MS-02 Launch to Orbital Station

Japan Schedules Cargo Transporter Launch to ISS for December 9

Automating sample testing thanks to space

EXO LIFE
Orbital ATK and Stratolaunch partner to offer competitive launch opportunities

Trusted Ariane 5 lays foundations for Ariane 6

ULA gets $860 million contract modification for expendable launch vehicle

Ariane 5 reaches the launch zone for Arianespace's October 4 liftoff

EXO LIFE
Stars with Three Planet-Forming Discs of Gas

TESS will provide exoplanet targets for years to come

The death of a planet nursery?

Protoplanetary Disk Around a Young Star Exhibits Spiral Structure

EXO LIFE
Technique mass-produces uniform, multilayered particles

A breakthrough in the study of how things break, bend and deform

TES team evaluates new data collection method after age-related issue

NASA Offers Prize Money for Winning 3D-Printed Habitat Ideas









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.