Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















ICE WORLD
Rapid decline of Arctic sea ice a combination of climate change and natural variability
by Staff Writers
Seattle WA (SPX) Mar 15, 2017


Qinghua Ding designed a new sea ice model experiment that combines forcing due to climate change with observed weather in recent decades. The model shows that a shift in wind patterns is responsible for about 60 percent of sea ice loss in the Arctic Ocean since 1979. Some of this shift is related to climate change, but the study finds that 30-50 percent of the observed sea ice loss since 1979 is due to natural variations in this large-scale atmospheric pattern.

Arctic sea ice in recent decades has declined even faster than predicted by most models of climate change. Many scientists have suspected that the trend now underway is a combination of global warming and natural climate variability.

A new study finds that a substantial chunk of summer sea ice loss in recent decades was due to natural variability in the atmosphere over the Arctic Ocean. The study, from the University of Washington, the University of California Santa Barbara and federal scientists, is published in Nature Climate Change.

"Anthropogenic forcing is still dominant - it's still the key player," said first author Qinghua Ding, a climate scientist at the University of California Santa Barbara who holds an affiliate position at the UW, where he began the work as a research scientist in the UW's Applied Physics Laboratory. "But we found that natural variability has helped to accelerate this melting, especially over the past 20 years."

The paper builds on previous work by Ding and other UW scientists that found changes in the tropical Pacific Ocean have in recent decades created a "hot spot" over Greenland and the Canadian Arctic that has boosted warming in that region.

The hot spot is a large region of higher pressure where air is squeezed together so it becomes warmer and can hold more moisture, both of which bring more heat to the sea ice below. The new paper focuses specifically on what this atmospheric circulation means for Arctic sea ice in September, when the ocean reaches its maximum area of open water.

"The idea that natural or internal variability has contributed substantially to the Arctic sea ice loss is not entirely new," said second author Axel Schweiger, a University of Washington polar scientist who tracks Arctic sea ice. "This study provides the mechanism and uses a new approach to illuminate the processes that are responsible for these changes."

Ding designed a new sea ice model experiment that combines forcing due to climate change with observed weather in recent decades. The model shows that a shift in wind patterns is responsible for about 60 percent of sea ice loss in the Arctic Ocean since 1979. Some of this shift is related to climate change, but the study finds that 30-50 percent of the observed sea ice loss since 1979 is due to natural variations in this large-scale atmospheric pattern.

"What we've found is that a good fraction of the decrease in September sea ice melt in the past several decades is most likely natural variability. That's not really a surprise," said co-author David Battisti, a UW professor of atmospheric sciences.

"The method is really innovative, and it nails down how much of the observed sea ice trend we've seen in recent decades in the Arctic is due to natural variability and how much is due to greenhouse gases."

The long-term natural variability is ultimately thought to be driven by the tropical Pacific Ocean. Conditions in the tropical Pacific set off ripple effects, and atmospheric waves snake around the globe to create areas of higher and lower air pressure.

Teasing apart the natural and human-caused parts of sea ice decline will help to predict future sea ice conditions in Arctic summer. Forecasting sea ice conditions is relevant for shipping, climate science, Arctic biology and even tourism. It also helps to understand why sea ice declines may be faster in some decades than others.

"In the long term, say 50 to 100 years, the natural internal variability will be overwhelmed by increasing greenhouse gases," Ding said. "But to predict what will happen in the next few decades, we need to understand both parts."

What will happen next is unknown. The tropical Pacific Ocean could stay in its current phase or it could enter an opposite phase, causing a low-pressure center to develop over Arctic seas that would temporarily slow the long-term loss of sea ice due to increased greenhouse gases.

"We are a long way from having skill in predicting natural variability on decadal time scales," Ding said.

Research paper

ICE WORLD
Humans to blame for bulk of Arctic sea ice loss: study
Paris (AFP) March 13, 2017
Natural changes in the environment are responsible for about 40 percent of Arctic sea ice loss, while humans are to blame for the rest, a climate study said Monday. The paper, based on model simulations of different climate conditions, was a rare attempt to quantify the relative contributions of humans and Nature to the dramatic decline and could have a major impact on future research into A ... read more

Related Links
University of Washington
Beyond the Ice Age

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Trump's budget would cut NASA asteroid mission, earth science

Aiming Higher: High School Students Build Flight Hardware Bound for Space

Student Scientists Select Menu for Astronauts

Fly me to the Moon: Russia seeks new cosmonauts

ICE WORLD
SpaceX launches EchoStar XXIII comms satellite into orbit

US BE-4 Rocket Engines to Replace Russian RD-180 on Atlas Carrier Rockets

Kennedy's Multi-User Spaceport Streamlines Commercial Launches

Hitting the brakes at Alpha Centauri

ICE WORLD
ExoMars: science checkout completed and aerobraking begins

Mars Rover Tests Driving, Drilling and Detecting Life in Chile's High Desert

Opportunity Driving South to Gully

NASA Mars Orbiter Tracks Back-to-Back Regional Storms

ICE WORLD
China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

Riding an asteroid: China's next space goal

ICE WORLD
A Consolidated Intelsat and OneWeb

UK funding space entrepreneurs

Kymeta and Intelsat announce new service to revolutionize how satellite services are purchased

ISRO Makes More Space for Private Sector Participation in Satellite Making

ICE WORLD
Why water splashes: New theory reveals secrets

Next-gen steel under the microscope

Aluminium giant Rusal doubles profits

Groundbreaking process for creating ultra-selective separation membranes

ICE WORLD
Operation of ancient biological clock uncovered

Fossil or inorganic structure? Scientists dig into early life forms

Gigantic Jupiter-type planet reveals insights into how planets evolve

Visualizing debris disk "roller derby" to understand planetary system evolution

ICE WORLD
ESA's Jupiter mission moves off the drawing board

NASA Mission Named 'Europa Clipper'

Juno Captures Jupiter Cloudscape in High Resolution

Juno to remain in current orbit at Jupiter




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement