Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















EXO WORLDS
Protostar blazes bright, reshaping its stellar nursery
by Staff Writers
Charlottesville VA (SPX) Mar 17, 2017


ALMA image of the glowing dust inside NGC 6334I, a protocluster containing an infant star that is undergoing an intense growth spurt, likely triggered by an avalanche of gas falling onto its surface. Image courtesy ALMA (ESO/NAOJ/NRAO); C. Brogan, B. Saxton (NRAO/AUI/NSF). For a larger version of this image please go here.

A massive protostar, deeply nestled in its dust-filled stellar nursery, recently roared to life, shining nearly 100 times brighter than before. This outburst, apparently triggered by an avalanche of star-forming gas crashing onto the surface of the star, supports the theory that young stars can undergo intense growth spurts that reshape their surroundings.

Astronomers made this discovery by comparing new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile with earlier observations from the Submillimeter Array (SMA) in Hawaii.

"We were amazingly fortunate to detect this spectacular transformation of a young, massive star," said Todd Hunter, an astronomer at the National Radio Astronomy Observatory (NRAO) in Charlottesville, Va., and lead author on a paper published in the Astrophysical Journal Letters.

"By studying a dense star-forming cloud with both ALMA and the SMA, we could see that something dramatic had taken place, completely changing a stellar nursery over a surprisingly short period of time."

In 2008, before the era of ALMA, Hunter and his colleagues used the SMA to observe a small but active portion of the Cat's Paw Nebula (also known as NGC 6334), a star-forming complex located about 5,500 light-years from Earth in the direction of the southern constellation Scorpius.

This nebula is similar in many respects to its more northern cousin, the Orion Nebula, which is also brimming with young stars, star clusters, and dense cores of gas that are on the verge of becoming stars. The Cat's Paw Nebula, however, is forming stars at a faster rate.

The initial SMA observations of this portion of the nebula, dubbed NGC 6334I, revealed what appeared to be a typical protocluster: a dense cloud of dust and gas harboring several still-growing stars.

Young stars form in these tightly packed regions when pockets of gas become so dense that they begin to collapse under their own gravity. Over time, disks of dust and gas form around these nascent stars and funnel material onto their surfaces helping them grow.

This process, however, may not be entirely slow and steady. Astronomers now believe that young stars can also experience spectacular growth spurts, periods when they rapidly acquire mass by gorging on star-forming gas.

The new ALMA observations of this region, taken in 2015 and 2016, reveal that dramatic changes occurred toward a portion of the protocluster called NGC 6334I-MM1 after the original SMA observations. This region is now about four times brighter at millimeter wavelengths, meaning that the central protostar is nearly 100 times more luminous than before.

The astronomers speculate that leading up to this outburst, an uncommonly large clump of material was drawn into the star's accretion disk, creating a logjam of dust and gas. Once enough material accumulated, the logjam burst, releasing an avalanche of gas onto the growing star.

This extreme accretion event greatly increased the star's luminosity, heating its surrounding dust. It's this hot, glowing dust that the astronomers observed with ALMA. Though similar events have been observed in infrared light, this is the first time that such an event has been identified at millimeter wavelengths.

To ensure that the observed changes were not the result of differences in the telescopes or simply a data-processing error, Hunter and his colleagues used the ALMA data as a model to accurately simulate what the SMA - with its more modest capabilities - would have seen if it conducted similar observations in 2015 and 2016.

By digitally subtracting the actual 2008 SMA images from the simulated images, the astronomers confirmed that there was indeed a significant and consistent change to one member of the protocluster.

"Once we made sure we were comparing the two sets of observations on an even playing field, we knew that we were witnessing a very special time in the growth of a star," said Crystal Brogan, also with the NRAO and co-author on the paper.

Further confirmation of this event came from complementary data taken by the Hartebeesthoek Radio Astronomy Observatory in South Africa. This single-dish observatory was monitoring the radio signals from masers in the same region.

Masers are the naturally occurring cosmic radio equivalent of lasers. They are powered by a variety of energetic processes, including outbursts from rapidly growing stars.

The data from the Hartebeesthoek observatory reveal an abrupt and dramatic spike in maser emission from this region in early 2015, only a few months before the first ALMA observation. Such a spike is precisely what astronomers would expect to see if there were a protostar undergoing a major growth spurt.

"These observations add evidence to the theory that star formation is punctuated by a sequence of dynamic events that build up a star, rather than a smooth continuous growth," concluded Hunter.

"It also tells us that it is important to monitor young stars at radio and millimeter wavelengths, because these wavelengths allow us to peer into the youngest, most deeply embedded star-forming regions. Catching such events at the earliest stage may reveal new phenomena of the star-formation process."

This research is presented in a paper titled "An extraordinary outburst in the massive protostellar system NGC6334I-MM1: Quadrupling of the millimeter continuum," by T.R. Hunter et al., published in the Astrophysical Journal Letters

EXO WORLDS
Visualizing debris disk "roller derby" to understand planetary system evolution
Washington DC (SPX) Mar 16, 2017
When planets first begin to form, the aftermath of the process leaves a ring of rocky and icy material that's rotating and colliding around the young central star like a celestial roller derby. Analogs to our own Solar System's Kuiper Belt, these disks of debris left over from planet formation can be detected by astronomers and studied to help understand the processes that create planetary syste ... read more

Related Links
National Radio Astronomy Observatory
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Russia to Build First New-Generation 'Federation' Spacecraft by 2021

NASA Selects New Research Teams to Further Solar System Research

Two more spacewalks for Thomas Pesquet

Trump's budget would cut NASA asteroid mission, earth science

EXO WORLDS
SpaceX cargo ship returns to Earth

Hitting the brakes at Alpha Centauri

N. Korea's Kim hails engine test as 'new birth' for rocket industry

N.Korea rocket test shows 'meaningful progress': South

EXO WORLDS
Does Mars Have Rings? Not Right Now, But Maybe One Day

ExoMars: science checkout completed and aerobraking begins

Mars Rover Tests Driving, Drilling and Detecting Life in Chile's High Desert

Opportunity Driving South to Gully

EXO WORLDS
China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

Riding an asteroid: China's next space goal

EXO WORLDS
OneWeb Satellites breaks ground on high-volume satellite manufacturing facility

Globalsat Sky and Space Global sign MoU for testing and offering satellite service in Latin America

Start-Ups at the Final Frontier

Russia probes murder of senior space official in jail

EXO WORLDS
Using lasers to create ultra-short pulses

The strangeness of slow dynamics

Ecosystem For Near-Earth Space Control

Airbus ships first high-power all-electric EUTELSAT 172B satellite to Kourou for Eutelsat

EXO WORLDS
Visualizing debris disk "roller derby" to understand planetary system evolution

Protostar blazes bright, reshaping its stellar nursery

Operation of ancient biological clock uncovered

Fossil or inorganic structure? Scientists dig into early life forms

EXO WORLDS
Scientists make the case to restore Pluto's planet status

ESA's Jupiter mission moves off the drawing board

NASA Mission Named 'Europa Clipper'

Juno Captures Jupiter Cloudscape in High Resolution




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement