. 24/7 Space News .
TECH SPACE
Physicists edge closer to controlling chemical reactions
by Staff Writers
Moscow, Russia (SPX) Dec 13, 2018

file illustration only

A team of researchers from the Moscow Institute of Physics and Technology, and Aarhus University in Denmark has developed an algorithm for predicting the effect of an external electromagnetic field on the state of complex molecules. The algorithm, which is based on a theory developed earlier by the same team, predicts tunneling ionization rates of molecules.

This refers to the probability that an electron will bypass the potential barrier and escape from its parent molecule. The new algorithm, presented in a paper in the Journal of Chemical Physics, enables researchers to look inside large polyatomic molecules, observe and potentially control electron motion therein.

Physicists use powerful lasers to reveal the electron structure of molecules. To do this, they illuminate a molecule and analyze its re-emission spectra and the products of the interaction between the molecule and the electromagnetic field of the laser pulse. These products are the photons, electrons, and ions produced when the molecule is ionized or dissociates (breaks up).

Previous research involving MIPT's theoretical attosecond physics group led by Oleg Tolstikhin showed that besides elucidating the electronic structure of a molecule, the same approach may enable physicists to control the electron motions in the molecule with attosecond precision. An attosecond, or a billionth of a billionth of a second, is the time it takes laser light to travel the distance comparable to the size of a small molecule.

"If you place a molecule in a field of powerful laser radiation, ionization occurs: An electron escapes the molecule," explains Andrey Dnestryan, a member of the theoretical attosecond physics group at MIPT.

"The motion of the electron is then affected by the variable laser field. At some point, it may return to the parent molecular ion. The possible outcomes of their interaction are rescattering, recombination, and dissociation of the molecule. By observing these processes, we can reconstruct the motions of electrons and nuclei in molecules, which is of profound interest to modern physics."

The interest in tunneling ionization stems from its role in experiments observing electronic and nuclear motion in molecules with attosecond time resolution. For example, tunneling ionization may enable researchers to track the motions of electrons and holes - positively charged empty spots resulting from the absence of electrons - along the molecule.

This opens up prospects for controlling their motion, which would help control the outcomes of chemical reactions in medicine, molecular biology, and other areas of science and technology. Precise calculations of tunneling ionization rates are vital to these experiments.

The tunneling ionization rate could be interpreted as the probability of an electron escaping the molecule in a particular direction. This probability depends on how the molecule is oriented relative to the external magnetic field.

Currently used theories tie tunneling ionization rates to electron behavior far away from atomic nuclei. However, the available software for quantum mechanical calculations and computational chemistry fail to predict the state of electrons in those regions. The researchers found a way around this.

"We recently managed to reformulate the asymptotic theory of tunneling ionization so that the ionization rate would be determined by electron behavior near nuclei, which can be calculated rather precisely using the methods available now," Dnestryan said.

"Until now, researchers could only calculate tunneling ionization rates for small molecules made of a few atoms. It is now possible for significantly larger molecules. In our paper, we demonstrate this by running the calculations for benzene and naphthalene," the physicist added.

The authors of the paper calculated tunneling ionization rates for several molecules as a function of their orientation relative to the external field. To perform the calculations, the team developed software, which it plans to make openly available. This will enable experimenter to rapidly determine the structure of large molecules with attosecond precision based on observed spectra of the molecules.

"This work turns the asymptotic theory of tunneling ionization, which we developed in 2011, into a powerful tool for calculating ionization rates for arbitrary polyatomic molecules. This is essential for solving a wide range of problems in strong-field laser physics and attosecond physics," Tolstikhinsaid.

Research paper


Related Links
Moscow Institute of Physics and Technology
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Are amorphous solids elastic or plastic?
beijing, China (SPX) Dec 12, 2018
In a crystalline solid, the atoms form an ordered lattice. Crystalline solids respond elastically to small deformations: When the applied strain is removed, the macroscopic stress, as well as the microscopic configuration of the atomic lattice, goes back to the original state. On the other hand, a material behaves plastically if it does not return to its original state. In general, plasticity only occurs when the deformation is sufficiently large. Unlike crystals, amorphous solids, such as glasses ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
George H.W. Bush's overlooked legacy in space exploration

UConn Research Project Heading to International Space Station

NASA sends new research, hardware to Space Station on SpaceX mission

PoSSUM scientist-astronaut candidates test novel space suits and biometric monitoring systems

TECH SPACE
Tesla CEO Elon Musk taunts US financial regulatory agency

Rocket Lab prepares to launch historic CubeSat mission for NASA

Arianespace Orbits GSAT-11 and Geo-Kompsat-2A for India and South Korea

SpaceX launches cargo, but fails to land rocket

TECH SPACE
InSight's robotic arm ready for some lifting on Mars

NASA's InSight lander 'hears' wind on Mars

NASA's Mars InSight Flexes Its Arm

Mars 2020 rover mission camera system 'Mastcam-Z' testing begins at ASU

TECH SPACE
Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

China releases smart solution for verifying reliability of space equipment components

China unveils new 'Heavenly Palace' space station as ISS days numbered

TECH SPACE
CAT rules in favour of Ofcom's EAN authorisation decision

Fleet Space Technologies' Centauri launched aboard SpaceX Falcon 9

Roscosmos Targeted by Info Attack to Hamper Revival of Space Industry in Russia

SAS Signs Distribution Agreement with GlobalSat Group

TECH SPACE
Gaming firm settles VR lawsuit with Facebook-owned Oculus

Green production of chemicals for industry

Scientists discover a material breaking modern chemistry laws

FEFU young scientists developed unique method to calculate transparent materials porosity

TECH SPACE
Life in Deep Earth totals 15 to 23 billion tons of carbon

An exoplanet loses its atmosphere in the form of a tail

Unknown treasure trove of planets found hiding in dust

Radio Search for Artificial Emissions from 'Oumuamua

TECH SPACE
Radio JOVE From NASA: Tuning In to Your Local Celestial Radio Show

The PI's Perspective: Share the News - The Farthest Exploration of Worlds in History is Beginning

Encouraging prospects for moon hunters

Evidence for ancient glaciation on Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.