. 24/7 Space News .
Scientists discover a material breaking modern chemistry laws
by Staff Writers
Moscow, Russia (SPX) Dec 13, 2018

These (a), (b) are spatial crystal lattices of co-enzymes, (c) shows 'unwrapped' lattice with clearly visible fragments of SiO6, paradoxically connected by the faces.

According to Pauling's rules, the fragments of the atomic lattice in inorganic materials are connected by vertices", because bonding by faces is the most energy-intensive way to form a chemical connection, therefore, it does not exist in nature.

However, scientists have proved, both experimentally and theoretically, using NUST MISIS' supercomputer, that it is possible to form such a connections if the materials are at ultra-high pressure conditions. The obtained results open a completely new way in the development of modern materials science, showing that fundamentally new classes of materials exist at extreme conditions.

"In our work, we have synthesized and described metastable phases of high-pressure silica, coesite-IV and coesite-V: their crystal structures are drastically different from any of the earlier described models, - Igor Abrikosov, Leader of the Theoretical Research Team, Professor, Head of the NUST MISIS Materials Modelling and Development Laboratory. - Two newly discovered coesites contain octahedrons SiO6, that, contrary to Pauling's rule, are connected through common face, which is the most energy-intensive for a chemical connection. Our results show that the possible silicate magmas in the lower mantle of the Earth can have complex structures, which makes these magmas more compressible than predicted before".

Research team, led by Professor Igor Abrikosov (NUST MISIS, Russia, Linkoping University (Sweden)), focus on the study of the materials at ultrahigh pressure. To put a material in such extreme conditions is one of the most promising ways of creating qualitatively new materials that would open new fantastic opportunities. For instance, in one of the recent papers scientists have reported on the creation of nitrides that were thought impossible to obtain.

Information about the structure and mechanical properties of silicon oxide is vital to understand the processes taking place in the mantle of our planet. While studying the structure of the material, which exists in extremely high temperatures and pressures deep in the Earth's interior, scientists have discovered that a special modification of silicon oxide - polymorph-coesite undergoes a number of phase transition at pressure of 30 GPa and form new phases ("coesite-IV" and "coesite-V"), which maintain tetrahedrons SiO4 as the main structural elements of the crystal lattice.

In the new experiments scientists have gone further by compressing silicon oxide in a diamond anvil to the pressure of more than 30 GPa and have seen structural changes in this phase using single-crystal x-ray diffraction. The results are surprising: these structural changes are exceptions to Pauling's rules.

Scientists have discovered two absolutely new modifications of coesite (coesite-IV and coesite-V) with structures (Figure 1) that are exceptional and "impossible" from the classical point of view of crystal chemistry: they have pentacoordinated silicon, adjacent octahedrons SiO6, and consist of four-, five- and six-coordinated silicon at the same time. Moreover, several fragments of the atomic lattice connect by faces, not vertices, which is impossible according to Pauling's rules.

Research paper

Related Links
National University of Science and Technology MISIS
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Are amorphous solids elastic or plastic?
beijing, China (SPX) Dec 12, 2018
In a crystalline solid, the atoms form an ordered lattice. Crystalline solids respond elastically to small deformations: When the applied strain is removed, the macroscopic stress, as well as the microscopic configuration of the atomic lattice, goes back to the original state. On the other hand, a material behaves plastically if it does not return to its original state. In general, plasticity only occurs when the deformation is sufficiently large. Unlike crystals, amorphous solids, such as glasses ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

George H.W. Bush's overlooked legacy in space exploration

UConn Research Project Heading to International Space Station

NASA sends new research, hardware to Space Station on SpaceX mission

PoSSUM scientist-astronaut candidates test novel space suits and biometric monitoring systems

Tesla CEO Elon Musk taunts US financial regulatory agency

Rocket Lab prepares to launch historic CubeSat mission for NASA

Arianespace Orbits GSAT-11 and Geo-Kompsat-2A for India and South Korea

SpaceX launches cargo, but fails to land rocket

InSight's robotic arm ready for some lifting on Mars

NASA's InSight lander 'hears' wind on Mars

NASA's Mars InSight Flexes Its Arm

Mars 2020 rover mission camera system 'Mastcam-Z' testing begins at ASU

Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

China releases smart solution for verifying reliability of space equipment components

China unveils new 'Heavenly Palace' space station as ISS days numbered

CAT rules in favour of Ofcom's EAN authorisation decision

Fleet Space Technologies' Centauri launched aboard SpaceX Falcon 9

Roscosmos Targeted by Info Attack to Hamper Revival of Space Industry in Russia

SAS Signs Distribution Agreement with GlobalSat Group

Custom-made artificial mother-of-pearl

Physicists edge closer to controlling chemical reactions

Compelling evidence for small drops of perfect fluid

Are amorphous solids elastic or plastic?

Life in Deep Earth totals 15 to 23 billion tons of carbon

An exoplanet loses its atmosphere in the form of a tail

Unknown treasure trove of planets found hiding in dust

Radio Search for Artificial Emissions from 'Oumuamua

Radio JOVE From NASA: Tuning In to Your Local Celestial Radio Show

The PI's Perspective: Share the News - The Farthest Exploration of Worlds in History is Beginning

Encouraging prospects for moon hunters

Evidence for ancient glaciation on Pluto

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.