![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Madrid, Spain (SPX) Dec 07, 2018
A new study, led by scientists from the Instituto de Astrofisica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star. The results of this work are published in the journal Science. To detect the atmosphere of the giant exoplanet WASP-69b the scientists used the CARMENES instrument, which is installed on the 3.5-meter telescope of the Calar Alto Observatory (located in Almeria, Spain). This spectrograph simultaneously covers the visible wavelength range and the near infrared at high spectral resolution. This has made it possible to reveal the composition of the atmosphere of this exoplanet and to draw conclusions about the speed of the helium particles that leave the gravitational field of the planet and the length of the tail they produce. The planet was observed during a transit, when the planet passed in front of its host star. During this event, the planet and its atmosphere eclipse part of the starlight. "We observed a stronger and longer lasting dimming of the starlight in a region of the spectrum where helium gas absorbs light," says Lisa Nortmann, a researcher at the IAC and lead author of the article published in the journal Science. "The longer duration of this absorption allows us to infer the presence of a tail " she adds. But this is not the only result described in the article. The authors have also analyzed four other planets in a similar way. These are the hot exoplanets HD 189733b and HD 209458b, which have a mass similar to that of Jupiter, the extremely hot giant planet KELT-9b and the warm Neptune-sized exoplanet GJ 436b. The analysis does not show extensive helium exospheres around the last three planets, which defies previous theoretical predictions. The hot Jupiter HD 189733b, on the other hand, does reveal a clear signal of absorbing helium, although here, the helium envelope is more compact and does not form a tail. The team also investigated the host stars of the five exoplanets using data from the European Space Agency's Multi-Mirror X-Ray Mission (ESA XMM-Newton). The results indicate that helium is detected in the atmospheres of those planets that receive the largest amount of X-ray and extreme ultraviolet radiation from their host stars. "This is a first big step towards finding out how exoplanet atmospheres evolve over time and what the distribution of masses and radii of the observed population of super-earth and mini-Neptune planets could result from," says Enric Palle, IAC researcher and co-author of the publication. The results of such studies could confirm that extreme radiation from the host star can strip the gaseous envelope of giant planets (similar to Jupiter or Neptune) and turn them into rocky planets with densities similar to Venus or Earth. "In the past, studies of atmospheric escape, like the one we have seen in WASP-69b, were based on space-borne observations of hydrogen in the far ultraviolet, a spectral region of very limited access and strongly affected by interstellar absorption," says Michael Salz, a researcher at the University of Hamburg and first author of a companion publication by the same team, which focuses on the details of the detection in HD 189733b to be published in the journal Astronomy and Astrophysics. "Our results" - he continues - "show that helium is a very promising new tracer to study atmospheric escape in exoplanets." This new line of research will enable the community of researchers specializing in characterization of exoplanet atmospheres to compare the evaporation processes in a large sample of planets and answer questions such as whether planets with ultra-short orbital periods are actually the evaporated nuclei of ancient hot Jupiters. The CARMENES instrument was developed by a consortium of eleven Spanish and German institutions, including the IAC. It was designed to search for terrestrial type planets in the habitable zone of M-stars, the region around a star where conditions allow the existence of liquid water. The results published demonstrate the ability of the instrument to contribute significantly to the exoplanet atmosphere research field.
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |