Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















EXO LIFE
Nearing the limits of life on Earth
by Staff Writers
Montreal, Canada (SPX) Jan 20, 2016


In University Valley, there is a layer of dry permafrost soil overlaying ice-rich permanently frozen ground. The ice in the permafrost is formed not by liquid water, but by frozen water vapor; the absence of liquid water, makes the soil less likely to be able to sustain life. Image courtesy Jackie Goordial. For a larger version of this image please go here.

It took Jackie Goordial over 1000 Petri dishes before she was ready to accept what she was seeing. Or not seeing. Goordial, a post-doctoral fellow in the Department of Natural Resource Sciences at McGill University has spent the past four years looking for signs of active microbial life in permafrost soil taken from one of the coldest, oldest and driest places on Earth: in University Valley, located in the high elevation McMurdo Dry Valleys of Antarctica, where extremely cold and dry conditions have persisted for over 150,000 years.

The reason that scientists are looking for life in this area is that it is thought to be the place on Earth that most closely resembles the permafrost found in the northern polar region of Mars at the Phoenix landing site.

"I've been trying to cheer her up by telling her that not finding life is important too," says Lyle Whyte, Goordial's supervisor. "Going into the study, we were sure that we would detect a functioning and viable microbial ecosystem in the permafrost soils of University Valley as we and others have done in Arctic and Antarctic permafrost, including in other sites at lower elevations in Antarctica. It is hard for both of us to believe that we may have reached a cold and arid threshold where even microbial life cannot actively exist."

Drilling for microbes in Antarctica
What brought the researchers to University Valley was a NASA ASTEP (astrobiology science and technology for exploring planets) project to test the IceBite auger, a permafrost drill designed to drill into Martian permafrost. The average daily air temperature in the Antarctic summer of 2013, when Goordial collected the permafrost samples which she tested both on the spot and later in the lab, was ? 14C and it never rose above 0C, making the permafrost difficult to drill.

The McGill team analyzed samples from two permafrost boreholes which reached a depth of just 42 cm and 55 cms below the surface. This may not sound like a lot, but drilling into permafrost to get soil samples for testing is very difficult.

"Anytime you drill into frozen ground and it has some ice in it the drilling process creates friction which melts the ice. The hole will refreeze within seconds if the drilling is interrupted, freezing the drill bit into the hole" says Whyte." I remember drilling in the Arctic and losing a drill bit in one of the holes we had made, just because it froze into the ice before we could get it out."

"Previous studies in the lower dry valleys of Antarctica and in subglacial lakes were giving us the impression that microbial life was rich in the cold regions. But this is finally Mars!" says Chris McKay of NASA's Ames Research Centre.

"University Valley has the coldest driest soil we can find on Earth. And life is really having a hard time of it there. This is certainly the training ground for the search for evidence of life on Mars and an extremely important result for NASA's astrobiology effort."

All the tests came out negative
The research team carried out a variety of tests, both in the field (where they failed to find evidence of carbon dioxide or methane - a gas used by all living things - in the soil) and then back in the lab at McGill in Montreal.

They sent soil samples for DNA testing, looking for matches with particular genes known to be found in microbes and fungi; they tried to stimulate microbial growth on a wide variety of substances and then count the cells produced; and they used highly sensitive radiorespiration activity assays, which involve feeding the soil microorganisms a food source which has been labelled with radioactive carbon, which can then be used to detect if the microorganisms are active.

The tests failed to show any signs of active life.

"We couldn't detect any microbial activity within these samples," says Whyte. "Any, very limited traces we were able to find of microbial life in these samples are most likely the remnants of microbes that are dormant or are slowly dying off. Given the continuous dryness and subfreezing temperatures, and the lack of available water, even in summer, it is unlikely that any microbial communities can grow in these soils."

Goordial adds, "We don't know if there is activity beyond our limits of detection. All we can say for sure is that after using all the current methods of testing available to us, the samples are unlike any other permafrost we have encountered to date on Earth"

Implications for the search for life on Mars
"If conditions are too cold and dry to support active microbial life on an analogous climate on Earth, then the colder dryer conditions in the near surface permafrost on Mars are unlikely to contain life." Says Whyte.

"Additionally, if we cannot detect activity on Earth, in an environment which is teeming with microorganisms, it will be extremely unlikely and difficult to detect such activity on Mars."

On a positive note however, the researchers add that this suggests that any microorganisms that may be transported to Mars from Earth by mistake are unlikely to be able to survive on the Martian surface, something that is of current concern for planetary protection.

Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica by Jacqueline Goordial et al in The ISME Journal: 10.1038/ismej.2015.239

.


Related Links
McGill University
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EXO LIFE
The habitability of other worlds
Gottingen, Germany (SPX) Jan 19, 2016
How much we weigh on a planet depends on its surface gravity. Gravity is an important parameter for stars as well, and changes drastically over the course of a star's lifetime, providing information on its age and stage of evolution. Since the stars in the night sky appear only as small spots of light, this value is very difficult to measure. A team of scientists from the Max Planck Instit ... read more


EXO LIFE
Audi joins Google Lunar XPrize competition

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

Chang'e-3 landing site named "Guang Han Gong"

EXO LIFE
Rover uses Rock Abrasion Tool to grind rocks

Thales Alenia Space to supply reaction control subsystem for ExoMars

Money troubles may delay Europe-Russia Mars mission

Opportunity Welcomes Winter Solstice

EXO LIFE
NASA's Scott Kelly unveils first flower grown in space: an orange zinnia

NASA completes Orion parachute development tests

How mold on Space Station flowers is helping get us to Mars

Newcomer Sierra Nevada to supply ISS alongside SpaceX, Orbital: NASA

EXO LIFE
China aims for the Moon with new rockets

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China shoots for first landing on far side of the moon

China Plans More Than 20 Space Launches in 2016

EXO LIFE
Water in US astronaut's helmet cuts short Briton's 1st spacewalk

Roscosmos prepares to launch first manned Soyuz MS

Japanese astronaut learned Russian to link two nations

NASA, Texas Instruments Launch mISSion imaginaTIon

EXO LIFE
Building a robust commercial market in low earth orbit

NASA awards ISS cargo transport contracts

SpaceX will try to land its reusable rocket on an ocean dock

SpaceX will attempt ocean landing of rocket Jan 17

EXO LIFE
Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

EXO LIFE
Recycling light

Polymer puts new medical solutions within reach

All-antiferromagnetic memory could get digital data storage in a spin

It's a 3-D printer, but not as we know it




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.