. 24/7 Space News .
TECH SPACE
All-antiferromagnetic memory could get digital data storage in a spin
by Staff Writers
Nottingham UK (SPX) Jan 18, 2016


Antiferromagnetic memory could be an excellent candidate for a so-called "universal memory", replacing all other forms of memory in computing, and transforming our electronic devices.

If you haven't already heard of antiferromagnetic spintronics it won't be long before you do. This relatively unused class of magnetic materials could be about to transform our digital lives. They have the potential to make our devices smaller, faster, more robust and increase their energy efficiency.

Physicists at The University of Nottingham, working in collaboration with researchers in the Czech Republic, Germany and Poland, and Hitachi Europe, have published (2pm US ET Thursday 14 January 2016) new research in the prestigious academic journal Science which shows how the 'magnetic spins' of these antiferromagnets can be controlled to make a completely different form of digital memory.

Lead researcher Dr Peter Wadley, from the School of Physics and Astronomy at The University of Nottingham, said: "This work demonstrates the first electrical current control of antiferromagnets. It utilises an entirely new physical phenomenon, and in doing so demonstrates the first all-antiferromagnetic memory device. This could be hugely significant as antiferromagnets have an intriguing set of properties, including a theoretical switching speed limit approximately 1000 times faster than the best current memory technologies."

This entirely new form of memory has a set of properties which could make it extremely useful in modern electronics. It does not produce magnetic fields, meaning the individual elements can be packed more closely, leading to higher storage density. Antiferromagnet memory is also insensitive to magnetic fields and radiation making it particularly suitable for niche markets, such as satellite and aircraft electronics.

If all of this potential could be realised, antiferromagnetic memory would be an excellent candidate for a so-called "universal memory", replacing all other forms of memory in computing, and transforming our electronic devices.

How did they do it?
Using a very specific crystal structure, CuMnAs, grown in almost complete vacuum, atomic layer by atomic layer - the research team has demonstrated that the alignment of the 'magnetic moments' of certain types of antiferromagnets can be controlled with electrical pulses through the material.

Dr Frank Freimuth of the Peter Grunberg Institute and the Institute for Advanced Simulation in Julich said: "The electric current brings about a quantum mechanical torque on individual spins and allows each of them to tilt 90 degrees". An effect first predicted by Dr Jakub Zelezny in Prague, Professor Tomas Jungwirth and colleagues at Nottingham.

What makes antiferromagnets better than ferromagnets?
Ferromagnets react to external magnetic fields. For magnetic strips on credit cards or hard drives on computers, this effect is useful as it allows data to be written. But it is necessary to shield these materials from unwanted magnetic fields, generated for instance by certain kinds of medical equipment, so that data is not deleted by mistake.

Antiferromagnetic materials are not influenced by magnetic fields, and are of no use in magnetic data writing methods commonly utilised today. Until now, it has only been possible for them to be used in the field of information technology in combination with other classes of materials.

But antiferromagnets are magnetically more robust and can, in principle, be switched much faster than ferromagnets, so the research team decided to look for a way to develop them into an independent data storage material class.

As a result, they have succeeded in electrically controlling the switching and read-out of the magnetic moment of an antiferromagnetic material.

The potential
Dr Wadley said: "In contrast to current (ferromagnetic) memory technologies, our antiferromagnetic memory cannot be erased even by large magnetic fields. It also does not generate magnetic fields, meaning that the individual memory elements could be packed more closely together, leading to denser memory storage. Another foreseen advantage, which is yet to be established, is the speed by which information can be written in antiferromagnetic memories. Its physical limit is hundreds to thousands of times greater than in ferromagnets.

"The potential increase in speed of operation, robustness, energy efficiency and storage density could have a huge commercial and societal impact."

This research, funded by the Grant Agency of the Czech Republic, the Engineering and Physical Sciences Research Council (EPSRC) in the UK and an EU 7th Framework Programme Grant. Dr Wadley, working with Dr Kevin Edmonds, Dr Richard Campion, Dr Andrew Rushforth, Professor Tomas Jungwirth and Professor Bryan Gallagher in the School of Physics and Astronomy in Nottingham now intends to fully explore this new effect and to produce prototype USB demonstrator memory devices.

MMM Intermag 2016 conference
On the day this research is published (Thursday 14 January 2016) Dr Wadley will be presenting his work at the MMM Intermag conference in San Diego - the largest conference on magnetism, which is held in the USA.

He said: "In August 2013 Nature Communications we published our first paper on this relatively unexplored area of applied physics. This latest study has taken 2 years to complete. A few years ago the field of antiferromagnetic spintronics was a very niche area. In the last year myself and colleagues have given upward of 20 invited talks at major international conferences. In this coming year there are symposia and sessions dedicated entirely to this exciting new emergent area of electronics research."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Nottingham
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Planetary Science Institute receives Data Archiving Services
Tucson AZ (SPX) Dec 14, 2015
The Planetary Science Institute received a $4 million, five year cooperative agreement from NASA to manage the Planetary Data System's Asteroid and Dust Subnode. The Subnode is part of the Small Bodies Node, managed by the University of Maryland. PSI has provided PDS archiving services for more than 20 years, PSI Research Scientist Eric Palmer said. "We maintain an archive of all NASA flig ... read more


TECH SPACE
Momentum builds for creation of 'moon villages'

Chang'e-3 landing site named "Guang Han Gong"

South Korea to launch lunar exploration in 2016, land by 2020

Death rumors of Russian lunar program 'greatly exaggerated' - Deputy PM

TECH SPACE
Rover Rounds Martian Dune to Get to the Other Side

Boulders on a Martian Landslide

NASA suspends March launch of InSight mission to Mars

University researchers test prototype spacesuits at Kennedy

TECH SPACE
Strengthening Our Space Technology Future: Snapshots of Success

Six Orion Milestones to Track in 2016

Gadgets get smarter, friendlier at CES show

Congress to NASA: Hurry up on that 'habitation augmentation module'

TECH SPACE
China plans 20 launches in 2016

China's Belt and Road Initiative catches world's imagination: Inmarsat CEO

China launches HD earth observation satellite

Chinese rover analyzes moon rocks: First new 'ground truth' in 40 years

TECH SPACE
British astronaut's first spacewalk set for Jan 15

NASA Delivers New Video Experience On ISS

British astronaut dials wrong number on Xmas call from space

Space Station Receives New Space Tool to Help Locate Ammonia Leaks

TECH SPACE
SpaceX will try to land its reusable rocket on an ocean dock

Maintaining Arianespace's launch services leadership in 2016

Arianespace starts year with record order backlog

Russian Space Forces launched 21 spacecraft in 2015

TECH SPACE
Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

TECH SPACE
Self-adaptive material heals itself, stays tough

Vietnam army probes mysterious 'space balls'

How seashells get their strength

China chemical giant to acquire Germany's KraussMaffei









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.