. 24/7 Space News .
How mold on Space Station flowers is helping get us to Mars
by Staff Writers
Washington DC (SPX) Jan 18, 2016

NASA astronauts Scott Kelly and Kjell Lindgren take a bite of plants harvested for the VEG-01 investigation. Image courtesy NASA. For a larger version of this image please go here.

When Scott Kelly tweeted a picture of moldy leaves on the current crop of zinnia flowers aboard the International Space Station, it could have looked like the science was doomed. In fact, science was blooming stronger than ever. What may seem like a failure in systems is actually an exceptional opportunity for scientists back on Earth to better understand how plants grow in microgravity, and for astronauts to practice doing what they'll be tasked with on a deep space mission: autonomous gardening.

"While the plants haven't grown perfectly," said Dr. Gioia Massa, NASA science team lead for Veggie, "I think we have gained a lot from this, and we are learning both more about plants and fluids and also how better to operate between ground and station. Regardless of final flowering outcome we will have gained a lot."

From drought to flood: when problems are a learning opportunity
The Veggie plant growth facility was installed on the orbiting laboratory in early May of 2014, and the first crop - 'Outredgrous' red romaine lettuce - was activated for growth. The first growth cycle faced some issues.

We lost two plants due to drought stress in the first grow out and thus were very vigilant with respect to the second crop," said Trent Smith, Veggie project manager.

The second crop of the same lettuce was activated in early July by NASA astronaut Scott Kelly, and thanks to lessons learned from the first run, adjustments to watering and collecting imagery of the plants were made. The leafy greens grew according to schedule, with only one plant pillow not producing. This time the crew was able to eat the lettuce when it was ready to be harvested a month later.

The next crop on the docket was a batch of zinnia flowers, but they weren't selected for their beauty. They were chosen because they can help scientists understand how plants flower and grow in microgravity.

"The zinnia plant is very different from lettuce, said Trent Smith, Veggie project manager. "It is more sensitive to environmental parameters and light characteristics. It has a longer growth duration between 60 and 80 days. Thus, it is a more difficult plant to grow, and allowing it to flower, along with the longer growth duration, makes it a good precursor to a tomato plant.

Just more than two weeks into their growth period, though, NASA astronaut Kjell Lindgren noted that water was seeping out of some of the wicks - the white flaps that contain the seeds and stick out of the tops of the plant pillows. The water partially engulfed three of the plants. Within 10 days, scientists noted guttation on the leaves of some of the plants. Guttation is when internal pressure builds and forces excess water out of the tips of the leaves. It occurs when a plant is experiencing high humidity.

Additionally, the zinnia leaves started to bend down and curl drastically. This condition, called epinasty, can indicate flooding in the roots. The anomalies all pointed to inhibited air flow in the plant growth facility that, when coupled with the excess water, could lead to big problems for the crop.

"After observing the guttation and more significant amounts of free water we decided to see about toggling the Veggie fan from low to high," said Smith. "We had evidence indicating reduced air flow through the internal Veggie facility volume, and needed to toggle the fan to high to dry things out."

The fix had to be postponed, though, due to an unplanned spacewalk in mid-December. By that time, tissue in the leaves of some of the plants began to die. On Dec. 22, Smith received a phone call at 3:45 in the morning. Trouble was brewing in the space garden.

"When you have high humidity and wet surfaces," he said, "leaves start dying, and become prime real estate for mold to grow."

The mold issue had Smith out of bed and the Veggie team on the phone by 4 a.m. Within four hours, new procedures were written and communicated to NASA astronaut Scott Kelly, who took over care of the zinnias after Lindgren returned to Earth on Dec. 18.

Kelly donned a dust mask as a safety measure, and cut away the affected, moldy plant tissue, which was then stowed in the minus eighty degree laboratory freezer (MELFI) so it could be returned to Earth and studied. The plant surfaces and plant pillow surfaces were sanitized with cleaning wipes, and the fans continued at a high speed in hopes of keeping the Veggie chamber dried out and mold growth abated.

By Christmas Eve, though, Kelly called down to the ground support team to report new problems with the plants. It seemed the high fan speed was drying out the crop too much, and Kelly said he thought they needed more water. He was told, though, that the next scheduled watering was not until Dec. 27.

"I think that would be too late," Kelly told the ground team. "You know, I think if we're going to Mars, and we were growing stuff, we would be responsible for deciding when the stuff needed water. Kind of like in my backyard, I look at it and say 'Oh, maybe I should water the grass today.' I think this is how this should be handled."

News of the mold didn't dampen Smith's Christmas spirit, though.

"We'd been planning on figuring out how to garden autonomously and his request was just perfect," Smith said. "Christmas Eve 2015 was our gift!"

Taking on the role of autonomous gardener
And so, Kelly became an autonomous gardener aboard the space station.

"This is perfect - he has the helm," Smith said. "We turned over care to Scott. He's seen the lettuce, he's got all the tools he needs, so we just provided him quick guidelines to understand the zinnias."

What the Veggie team created was dubbed "The Zinnia Care Guide for the On-Orbit Gardener," and gave basic guidelines for care while putting judgment capabilities into the hands of the astronaut who had the plants right in front of him. Rather than pages and pages of detailed procedures that most science operations follow, the care guide was a one-page, streamlined resource to support Kelly as an autonomous gardener. Kelly tweeted a picture of the flowers in distress, noting that he'd have to channel a character from the movie, "The Martian."

Contrary to seeming like a dead end for the crop, the issues faced by the zinnias offered a multitude of learning opportunities for scientists back on Earth. In fact, Smith said, the experience drives home what science experiments are all about: finding out what doesn't work, and figuring out how to solve it.

For crews on the way to Mars, Smith said, scientists need to know what would happen if crops experienced drought, flooding, mold growth or other challenges. Would the practices of cutting away dead tissue and sanitizing plants work? How does changing the watering schedule affect the growth? How can crew members be given more opportunities to take charge in the gardening process?

"All these things are so rich in information, my head kind of spins to think about what to focus on," Smith said. "This is perfect. This is really getting us down the road for other crops."

Smith said the Veggie team had hoped to move toward autonomous gardening, and Kelly's willingness to jump in and care for the plants independent of the ground support team was key.

Triumph, not trouble
Shortly after Kelly's heroic holiday gardening efforts, two of the plants that displayed stress died off and were clipped and stowed in the freezer to be returned to Earth for studying. Not all hope was lost, though. The remaining two plants have continued to thrive, and have even had new offshoots of buds forming.

"We see them growing out of their stressed states as seen by the new growth not showing leaf curling," Smith said. "We see that we can use our fan to adjust the conditions. We don't see guttation or free water. So, lots of things and better understanding of our tools for the on-orbit autonomous gardener."

On Jan. 8, Kelly tweeted a picture of the plants' progress.

On Jan. 12, pictures from Kelly showed the first peeks of petals beginning to sprout on a few buds. The bud-to-petal-to-full-flower process can take about 7 to 10 days, Smith said, so flowers could be present by next week.

If the flowers do blossom, chances are it will be an exciting opportunity for the entire crew, and not just Kelly. Previous astronauts who have conducted plant experiments on orbit have noted that it is an experience that brings crew members together. When NASA astronaut Shannon Lucid grew wheat stalks on the Russian Mir space station in 1996, she called the entire crew over to inspect new seed heads on the tips of the stalks.

When the first batch of lettuce was harvested in June of 2014 on the ISS, several crew members joined in the event. When the second batch of lettuce was harvested in August, and astronauts were allowed to eat the fruits of their labor, they gathered and shared the produce with international partners on the station.

"Plants can indeed enhance long duration missions in isolated, confined and extreme environments - environments that are artificial and deprived of nature," said Alexandra Whitmire, deputy element scientist for the Behavioral Health and Performance (BHP) element in the NASA Human Research Program (HRP). "While not all crew members may enjoy taking care of plants, for many, having this option is beneficial."

Though most evidence of the psychological benefits of growing plants in space is anecdotal, Whitmire said efforts like Veggie will yield important information in preparation for a Mars mission.

"In future missions, the importance of plants will likely increase given the crews' limited connection to Earth," Whitmire said. "Studies from other isolated and confined environments, such as Antarctic stations, demonstrate the importance of plants in confinement, and how much more salient fresh food becomes psychologically, when there is little stimuli around."

The implications of plant life for future spaceflight, Whitmire said, is very significant.

More crops for Veggie are heading to the orbiting laboratory aboard SpaceX-8. The Veg-03 run will include two sets of Chinese cabbage, and one set of red romaine lettuce. In 2018, there are plans to launch dwarf tomato seeds to the space station.

Smith said the lessons learned from growing zinnia flowers will be critical in the process of growing tomatoes, a fellow flowering plant. Studies are also in progress to see how adjusting the lighting in the Veggie plant growth facility can affect plan mineral composition. There will be preflight testing to determine what "light recipe" to use aboard the station.

For now, scientists continue to closely monitor the zinnia crop and are following Kelly's lead for care based on his observations. The unexpected turns experienced during this Veggie run have actually offered bountiful opportunities for new learning and better understanding of one of the critical components to future journeys to Mars.

Smith understands, though, that a space garden is like any other garden - sometimes, things just don't grow. The Veggie team is hopeful that the newly-emerging petals will fully bloom soon.

"I'm an eternal optimist," Smith said.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Station at NASA
Space Tourism, Space Transport and Space Exploration News

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
Celebrity chefs create gourmet delights for astronauts
Paris (AFP) Dec 23, 2015
Michelin-starred chefs are vying to create Christmas delights for astronauts spending the festive season 400 kilometres away from Earth and their families. The latest in the pack is London celebrity chef Heston Blumenthal who is crafting delicacies for British astronaut Tim Peake currently on board the International Space Station (ISS). The first British astronaut to the ISS space stati ... read more

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

Chang'e-3 landing site named "Guang Han Gong"

South Korea to launch lunar exploration in 2016, land by 2020

A Starburst Spider On Mars

Opportunity Welcomes Winter Solstice

Rover Rounds Martian Dune to Get to the Other Side

Boulders on a Martian Landslide

SAIC Awarded $485 Million Enterprise Applications Service Technologies 2 Contract by NASA

NASA completes Orion parachute development tests

Strengthening Our Space Technology Future: Snapshots of Success

Six Orion Milestones to Track in 2016

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China Plans More Than 20 Space Launches in 2016

China plans 20 launches in 2016

China's Belt and Road Initiative catches world's imagination: Inmarsat CEO

Roscosmos prepares to launch first manned Soyuz MS

Long haul, night repairs for British, US spacewalkers

ISS Science Rockets Into 2016

British astronaut's first spacewalk set for Jan 15

Building a robust commercial market in low earth orbit

NASA awards ISS cargo transport contracts

SpaceX will attempt ocean landing of rocket Jan 17

Arianespace year-opening mission delivered to Final Assembly Building

Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

New twists in the diffraction of intense laser light

A new way to print 3-D metals and alloys

Space Protection - A Financial Primer

Russia Building a Powerful New Early Warning Radar Network

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.