Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

NASA telescopes detect Jupiter-like storm on small star
by Staff Writers
Pasadena CA (JPL) Dec 11, 2015

This illustration shows a cool star, called W1906+40, marked by a raging storm near one of its poles. Image courtesy NASA/JPL-Caltech. For a larger version of this image please go here.

Astronomers have discovered what appears to be a tiny star with a giant, cloudy storm, using data from NASA's Spitzer and Kepler space telescopes. The dark storm is akin to Jupiter's Great Red Spot: a persistent, raging storm larger than Earth.

"The star is the size of Jupiter, and its storm is the size of Jupiter's Great Red Spot," said John Gizis of the University of Delaware, Newark. "We know this newfound storm has lasted at least two years, and probably longer." Gizis is the lead author of a new study appearing in The Astrophysical Journal.

While planets have been known to have cloudy storms, this is the best evidence yet for a star that has one. The star, referred to as W1906+40, belongs to a thermally cool class of objects called L-dwarfs. Some L-dwarfs are considered stars because they fuse atoms and generate light, as our sun does, while others, called brown dwarfs, are known as "failed stars" for their lack of atomic fusion.

The L-dwarf in the study, W1906+40, is thought to be a star based on estimates of its age (the older the L-dwarf, the more likely it is a star). Its temperature is about 3,500 degrees Fahrenheit (2,200 Kelvin). That may sound scorching hot, but as far as stars go, it is relatively cool. Cool enough, in fact, for clouds to form in its atmosphere.

"The L-dwarf's clouds are made of tiny minerals," said Gizis. Spitzer has observed other cloudy brown dwarfs before, finding evidence for short-lived storms lasting hours and perhaps days.

In the new study, the astronomers were able to study changes in the atmosphere of W1906+40 for two years. The L-dwarf had initially been discovered by NASA's Wide-field Infrared Survey Explorer in 2011. Later, Gizis and his team realized that this object happened to be located in the same area of the sky where NASA's Kepler mission had been staring at stars for years to hunt for planets.

Kepler identifies planets by looking for dips in starlight as planets pass in front of their stars. In this case, astronomers knew observed dips in starlight weren't coming from planets, but they thought they might be looking at a star spot - which, like our sun's "sunspots," are a result of concentrated magnetic fields. Star spots would also cause dips in starlight as they rotate around the star.

Follow-up observations with Spitzer, which detects infrared light, revealed that the dark patch was not a magnetic star spot but a colossal, cloudy storm with a diameter that could hold three Earths. The storm rotates around the star about every 9 hours. Spitzer's infrared measurements at two infrared wavelengths probed different layers of the atmosphere and, together with the Kepler visible-light data, helped reveal the presence of the storm.

While this storm looks different when viewed at various wavelengths, astronomers say that if we could somehow travel there in a starship, it would look like a dark mark near the polar top of the star.

The researchers plan to look for other stormy stars and brown dwarfs using Spitzer and Kepler in the future.

"We don't know if this kind of star storm is unique or common, and we don't why it persists for so long," said Gizis.

Other authors of the study are: Adam Burgasser - University of California, San Diego; Kelle Cruz, Sara Camnasio and Munazza Alam - Hunter College, New York City, New York; Stanimir Metchev - University of Western Ontario, Canada; Edo Berger and Peter Williams - Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts; Kyle Dettman - University of Delaware, Newark; and Joseph Filippazzo - College of Staten Island, New York.


Related Links
Stellar Chemistry, The Universe And All Within It

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
VLT revisits a curious cosmic collision
Munich, Germany (SPX) Dec 10, 2015
The spectacular aftermath of a 360 million year old cosmic collision is revealed in great detail in new images from ESO's Very Large Telescope at the Paranal Observatory. Among the debris is a rare and mysterious young dwarf galaxy. This galaxy is providing astronomers with an excellent opportunity to learn more about similar galaxies that are expected to be common in the early Universe, b ... read more

XPRIZE verifies moon express launch contract, kicking off new space race

Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Mars Mission Team Addressing Vacuum Leak on Key Science Instrument

Letter to Mars? Royal Mail works it out for British boy, 5

European payload selected for ExoMars 2018 surface platform

ExoMars has historical, practical significance for Russia, Europe

A Year After Maiden Voyage, Orion Progress Continues

NASA's Work to Understand Climate: A Global Perspective

Australia seeks 'ideas boom' with tax breaks, visa boosts

Orion's power system to be put to the test

China launches new communication satellite

China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

China's scientific satellites to enter uncharted territory

Orbital cargo ship arrives at space station

Getting Into the Flow on the ISS

Orbital to fly first space cargo mission since 2014 explosion

Russian-US Space Collaboration Intact Despite Chill in Bilateral Ties

45th Space Wing supports NASA's Orbital ATK CRS-4 launch

Orbital cargo ship blasts off toward space station

Virgin Galactic Welcomes 'Cosmic Girl' To Fleet Of Space Access Vehicles

DXL-2: Studying X-ray emissions in space

Student helps discover new planet, calculates frequency of Jupiter-like planets

What kinds of stars form rocky planets

Half of Kepler's giant exoplanet candidates are false positives

Exiled exoplanet likely kicked out of star's neighborhood

Conductor turned insulator amid disorder

Seeking a new generation of light-based sensing systems

EDRS-A and its laser are ready to fly

Russia's Kanopus-ST Research Satellite Deorbited, Heading to Earth

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.