Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Non-platinum catalysts for fuel cells remain a mystery
by Staff Writers
Tsukuba, Japan (SPX) Jan 22, 2016

Patterning nitrogen-doped graphite to create many edges also increases the amount of pyridinic nitrogen present. Carbon atoms adjacent to pyridinic nitrogen behave as the active site for oxygen reduction, which is a key process in fuel cell technologies. Image courtesy University of Tsukuba. For a larger version of this image please go here.

A persistent controversy in catalysts for fuel cells has just been solved by a team of researchers from the Faculty of Pure and Applied Sciences at the University of Tsukuba.

The oxygen reduction reaction is a key step in the operation of fuel cells, but depends on expensive precious metal-based catalysts. Carbon-based catalysts with added nitrogen are among the most promising alternatives to precious metals, and could allow more widespread use of fuel cell technology.

However, until now, the arrangement of nitrogen and carbon that gave the catalytic effect remained a mystery, stalling efforts to develop more effective materials.

In an article published this week in Science, a team of researchers from the University of Tsukuba identified the catalytic structure and proposed a mechanism by which the reaction works.

"We knew that nitrogen-doped carbon was a good oxygen reduction catalyst, but no one was sure whether the nitrogen was pyridinic or graphitic," said corresponding author Prof. Junji Nakamura.

To solve the mystery, the team fabricated four model catalyst substrates, which simulated competing potential structures and analyzed their reaction performance. Pyridinic nitrogen, or nitrogen atoms bonded to two carbon atoms, occur mainly at the edges of the material.

By patterning the substrates to change the number of edges, the team could control the presence of pyridinic nitrogen and measure how it affected the catalytic performance. These results showed that the active catalytic sites were associated with pyridinic nitrogen.

Taking the research a step further, the investigators then proposed the various stages of the reaction mechanism after finding that it was actually the carbon atom next to the nitrogen that was the active site rather than the nitrogen atom itself. As the corresponding author Prof. Nakamura noted: "Clarifying the active site and mechanism is a great step forward and will allow optimization studies to focus on driving up catalyst performance."


Related Links
University of Tsukuba
Powering The World in the 21st Century at

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Self-heating lithium-ion battery could beat the winter woes
University Park PA (SPX) Jan 21, 2016
A lithium-ion battery that self heats if the temperature is below 32 degrees Fahrenheit has multiple applications, but may have the most impact on relieving winter "range anxiety" for electric vehicle owners, according to a team of researchers from Penn State and EC Power, State College. "It is a long standing problem that batteries do not perform well at subzero temperatures," said Chao-Y ... read more

Audi joins Google Lunar XPrize competition

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

Chang'e-3 landing site named "Guang Han Gong"

Money troubles may delay Europe-Russia Mars mission

Opportunity Welcomes Winter Solstice

A Starburst Spider On Mars

Rover Rounds Martian Dune to Get to the Other Side

NASA's Scott Kelly unveils first flower grown in space: an orange zinnia

How mold on Space Station flowers is helping get us to Mars

SAIC Awarded $485 Million Enterprise Applications Service Technologies 2 Contract by NASA

NASA completes Orion parachute development tests

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China Plans More Than 20 Space Launches in 2016

China plans 20 launches in 2016

NASA, Texas Instruments Launch mISSion imaginaTIon

Water in US astronaut's helmet cuts short Briton's 1st spacewalk

Roscosmos prepares to launch first manned Soyuz MS

Long haul, night repairs for British, US spacewalkers

Building a robust commercial market in low earth orbit

NASA awards ISS cargo transport contracts

SpaceX will try to land its reusable rocket on an ocean dock

SpaceX will attempt ocean landing of rocket Jan 17

Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

CSU imaging tool maps cells' composition in 3-D

Gloop from the deep sea

High-performance material polyimide for the first time with angular shape

Copper deposition to fabricate tiny 3-D objects

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.