. 24/7 Space News .
IRON AND ICE
Mechanism underlying size-sorting of rubble on asteroid Itokawa revealed
by Staff Writers
Onna, Japan (SPX) Mar 09, 2017


Asteroid Itokawa. Image courtesy JAXA.

In 2005, the Hayabusa spacecraft developed by the Japan Aerospace Exploration Agency (JAXA) landed on Itokawa, a small near-Earth asteroid named after the famous Japanese rocket scientist Hideo Itokawa. The aim of the unmanned mission was to study the asteroid and collect a sample of material to be returned to Earth for analysis.

Contrary to scientific predictions that small asteroids are barren nuggets of rock, photographs taken by the Hayabusa spacecraft revealed that the surface of Itokawa is strewn with different sized particles. Even more puzzling was the lateral separation of small and large particles - with large boulders occupying the highlands and small pebbles occupying the lowlands.

Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST), Japan, in collaboration with researchers at Rutgers University, USA, have used a combination of experiments, simulations and analyses to propose a mechanism underlying the lateral size-sorting of particles on Itokawa: small pebbles hitting the surface of Itokawa rebound from boulders but sink into pebble-rich regions.

Size-sorting of particles on Itokawa was formerly attributed to the Brazil Nut Effect (BNE) in which particles of different sizes separate during sustained vertical shaking in the presence of gravity. Similar to the phenomenon in which shaking a box of granola causes large clusters to rise to the surface and smaller oats sink to the bottom, large boulders rise to the surface of asteroid rubble piles, while smaller pebbles sink. But even if the BNE can account for boulders rising to the surface, it fails to explain the observed lateral segregation of particles.

"Together with researchers at Rutgers University, we have come up with a simpler and more viable reason for the size-sorting of particles on Itokawa," says Professor Pinaki Chakraborty, head of OIST's Fluid Mechanics Unit.

The findings, to be published in Physical Review Letters give insight into the formation and evolution of small asteroids, providing a window into the early stages of the solar system.

From the photographs, it can be observed that volumes of boulders and pebbles on the surface of Itokawa are comparable, meaning that there must be many more pebbles by number. It follows that most collisions that formed the asteroid must have been from small particles. This is significant because when a pebble hits a boulder it rebounds, whereas when it hits a sea of other pebbles its momentum dies. The researchers predicted that this process - which they termed 'ballistic sorting' - could underlie Itokawa's size-sorting phenomenon.

To test this experimentally, researchers at Rutgers University dropped sand particles on to a ceramic plate to model pebbles colliding with boulders and other pebbles. They observed that when sand particles hit the plate, they bounce off, but when they hit a mound of sand, they aggregate, leading to growing sand piles.

"These initial experiments show that falling sand bounces away from boulders, but stays near sandy regions," explains Professor Troy Shinbrot from Rutgers University and lead author of the study.

Next, Prof. Shinbrot and colleagues dropped sand particles on stones that were randomly placed at the bottom of a box. Measuring the size of the sand islands over time, the team showed that the area of the islands grows according to the Hill equation, which is used to describe processes in which an initial accumulation promotes further accumulation.

In order to test if these experimental results apply to Itokawa - which has much lower gravity than Earth - Dr. Tapan Sabuwala from OIST's Continuum Physics Unit, conducted computer simulations in which he varied the gravity and quantified the ballistic sorting effect by dropping pebbles on a substrate of boulders and pebbles and tracking each pebble's trajectory. He found that pebbles that hit boulders travel further than pebbles that hit other pebbles, irrespective of gravitational pull.

"Our simulations confirm that pebble seas grow because incoming pebbles rebound from stones but collide inelastically with other pebbles," says Dr. Sabuwala. "We also find that ballistic sorting leads to the formation of flat pebble seas in gravitational valleys."

Based on both experiments and simulations, the team concluded that low speed deposition of pebbles results in a predictable growth of pebble seas.

"We believe that ballistic sorting may be the dominant mechanism underlying size-sorting of particles on small asteroids like Itokawa," says Prof. Shinbrot. "Larger asteroids may also undergo ballistic sorting but because they are more susceptible to high energy impacts and other landscape-disrupting factors, the situation is more complicated."

Preliminary imaging of asteroid Bennu, which is comparable in size to Itokawa, suggests that it also exhibits lateral size segregation of particles on its surface. A NASA-led exploration of Bennu commencing in 2018 is expected to give further insights into the extent of ballistic sorting.

"Our research may be useful for upcoming space missions, particularly in guiding successful spacecraft-landings on asteroids," says Prof. Chakraborty. "In addition to the mission to asteroid Bennu, ongoing JAXA's Hayabusa 2 mission to asteroid Ryugu and the upcoming NASA-led mission to Jupiter's Trojan asteroids due to launch in 2021, could benefit from this new finding."

IRON AND ICE
Asteroid Split in Two and, Years Later, Developed Tails
Granada, Spain (SPX) Mar 03, 2017
Asteroids on the main belt, situated between Mars and Jupiter, move around the Sun in quasi circular orbits, so they do not undergo the temperature changes which, in comets, produce the characteristic tails. Nevertheless, some twenty cases have been documented of asteroids which, for various reasons, increase their glow and unfurl a tail of dust. Among the latter stands P/2016 J1, the youngest k ... read more

Related Links
Okinawa Institute of Science and Technology (OIST) Graduate University
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
India has capability to develop space station, says top official

Orion spacecraft achieves key safety milestone

The NASA Imager Dentists Use Daily

Marshall shakes, packs, ships and tracks NASA payloads

IRON AND ICE
Blue Origin shares video of New Glenn rocket

Europe launches fourth Earth monitoring satellite

Elon Musk: tech dreamer reaching for sun, moon and stars

ULA launches NROL-79 payload for NRO

IRON AND ICE
New evidence for a water-rich history on Mars

Humans May Quickly Evolve on Mars, Biologist Claims

NASA Orbiter Steers Clear of Mars Moon Phobos

Remnants of a mega-flood on Mars

IRON AND ICE
Riding an asteroid: China's next space goal

China's 1st cargo spacecraft to make three rendezvous with Tiangong-2

China to launch space station core module in 2018

Thinking Big: China Hopes to Conduct 2nd Mission to Mars by 2030

IRON AND ICE
Iridium Safety Voice Communications Installs Surge Past 500 Aircraft

Eutelsat Signs up for Blue Origin's New Glenn Launcher

Turkey Moves Closer to Launching Own Space Agency

OneWeb, Intelsat merge to advance satellite internet

IRON AND ICE
Aireon and Thales Begin Validation of Space-Based ADS-B Data

Space surveillance radar system fully operational

Coffee-ring effect leads to crystallization control

3-D printing with plants

IRON AND ICE
Hunting for giant planet analogs in our own backyard

Faraway Planet Systems Are Shaped Like the Solar System

Biochemical 'fossil' shows how life may have emerged without phosphate

The missing link in how planets form

IRON AND ICE
Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase

NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.