. 24/7 Space News .
TIME AND SPACE
JILA's superradiant laser may one day boost atomic clocks
by Staff Writers
Boulder CO (SPX) Oct 19, 2016


JILA's superradiant laser is expected to be more stable than ordinary lasers, making it a sharper tool for improving the performance of atomic clocks. The laser is based on the same atom used in strontium lattice atomic clocks and might even serve as a clock itself. Image courtesy NIST. For a larger version of this image please go here.

JILA physicists have demonstrated a novel laser design based on synchronized emissions of light from the same type of atoms used in advanced atomic clocks. The laser could be stable enough to improve atomic clock performance a hundredfold and even serve as a clock itself, while also advancing other scientific quests such as making accurate "rulers" for measuring astronomical distances.

Described in the October 14 issue of Science Advances, the "superradiant" laser's output of red light is expected to be about 10,000 times less sensitive than conventional lasers to pervasive mechanical vibrations, or noise. As a result, the new laser can lock onto an exact frequency, or color, more tightly, making it 100 times sharper as a precision tool.

The work was done at JILA, a partnership of the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder. NIST has long been a world leader in developing ultra-stable lasers, and the new work provides a qualitatively new approach for advancing the field further.

The same JILA group demonstrated the basic principle for a superradiant laser in 2012. Now the scientists have built the laser using the same type of atoms used in JILA's world-leading strontium lattice clock. In fact, the new laser might be used as an atomic clock all by itself.

Strontium atoms were chosen because they have an excellent "memory" of their exact color or frequency. They can potentially store this information for 2.5 minutes, compared to the mere 100 billionths of a second of typical atoms. This allows the superradiant laser to store and protect most of the laser's color information inside the atoms.

In contrast, ordinary lasers store this information in light bouncing between two mirrors, and any mirror vibrations scramble it. The ability to maintain a precise frequency is crucial for applications like atomic clocks, which rely on lasers to make atoms "tick" from one energy state to another.

"But here is the rub: The very long memory of the atoms is awesome, but it also makes it extremely difficult to get the atoms to emit any light, which provides the information for us to use," said JILA/NIST scientist James Thompson. "But in this superradiant laser, for the first time, we have coaxed these atoms to emit their light 10,000 times faster than they would normally like to emit it."

JILA's superradiant laser uses 200,000 strontium atoms stacked in layers of 5,000 and trapped in a hollow enclosure - a cavity - between two mirrors (these mirrors do vibrate, but the frequency information is stored in the atoms). The atoms are chilled to temperatures near absolute zero and levitated in a vacuum by an optical lattice, a "crystal of light" created by intersecting external laser beams.

The experiment begins by briefly shining light on the atoms to prepare them in their long-lived excited, or high-energy, state. An environmental signal - quantum noise of empty space - prompts the strontium atoms to spontaneously start ticking as their outer electrons begin to bounce back and forth from one side of the atom to the other.

The oscillation is like a miniature antenna that radiates a very small amount of light into the cavity. This very weak light, consisting of only a few light particles, or photons, bouncing back and forth inside the cavity, allows the atoms to communicate and synchronize with each other. This synchronization phenomenon is also evident in pendulum clocks placed near each other, and even in the flashing of fireflies.

As the synchronization spreads and strengthens, more and more light is emitted, until eventually all theatoms have moved from an excited (high-energy) to a calm (low-energy) state. Light bounces back and forth between the mirrors nearly 30,000 times before leaking out through the mirrors. All of the energy initially stored inside of the atoms has been converted into a pulse of laser light lasting 50 hundredths of a second.

When synchronized, the collection of small antennas act like a single "super antenna" that broadcasts power into the cavity at a much higher than normal rate - a process called superradiance because the collective emission is 1,000 times more intense than independently radiating atoms. The emission rate increases proportionally to the number of atoms squared, making the laser much brighter than is possible without synchronization.

Future studies will investigate use of the pulsed superradiant laser light as an absolute frequency reference for such applications as atomic clocks. In addition, researchers hope to create a continuous superradiant laser beam by constantly returning atoms to the excited state.

"The superradiant laser light is still billions of times weaker than typical lasers, but the key point is that the color or frequency of the light should be very stable," Thompson said.

Such a laser might be just as stable as the atoms used in the most advanced clocks. Today's best atomic clocks are limited in part by laser noise. Because a superradiant laser essentially uses an atomic clock as its energy source, the laser light both reads out the ticking of the atoms and is immune to cavity mirror vibrations. Better lasers may also have applications in space science, perhaps as rulers of light that could reach across distances as vast as from the Earth to the Sun, potentially enabling the detection of gravity waves in space, for example.

The research was funded by the Defense Advanced Research Projects Agency, Army Research Office, National Science Foundation and NIST. Paper: M.A. Norcia, M.N. Winchester, J.R.K. Cline and J.K. Thompson. Superradiance on the milliHertz linewidth strontium clock transition. Science Advances. October 14, 2016.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Institute of Standards and Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Synchronizing optical clocks to one quadrillionth of a second
Washington DC (SPX) Oct 13, 2016
An international team of researchers, led by the National Institute of Standards and Technology (NIST), based in Gaithersburg, Maryland, has advanced their work with synchronizing a remote optical clock with a master clock by exploring what happens to time signals that need to travel through 12 kilometers (km) of turbulent air, which is known to distort optical signals. As the team reports ... read more


TIME AND SPACE
Spectacular Lunar Grazing Occultation of Bright Star on Oct. 18

Hunter's Supermoon to light up Saturday night sky

Small Impacts Are Reworking Lunar Soil Faster Than Scientists Thought

A facelift for the Moon every 81,000 years

TIME AND SPACE
Euro-Russian craft enters Mars orbit, but lander's fate unknown

Anxious wait for news of Mars lander's fate

What! - Go To Mars?

Modeling floods that formed canyons on Earth and Mars

TIME AND SPACE
Beaches, skiing and tai chi: Club Med, Chinese style

NASA begins tests to qualify Orion parachutes for mission with crew

New Zealand government open-minded on space collaboration

Growing Interest: Students Plant Seeds to Help NASA Farm in Space

TIME AND SPACE
Chinese astronauts reach orbiting lab: Xinhua

Astronauts enjoy range of delicacies on Shenzhou XI

China to enhance space capabilities with launch of Shenzhou-11

China launches 2 astronauts for 33-day mission

TIME AND SPACE
Two Russians, one American blast off to ISS

Tools Drive NASA's TReK to New Discoveries

Hurricane Nicole delays next US cargo mission to space

Automating sample testing thanks to space

TIME AND SPACE
Swedish Space Corporation Celebrates 50th Anniversary of Esrange Space Center

US-Russia Standoff Leaves NASA Without Manned Launch Capabilities

Ariane 5 ready for first Galileo payload

ILS Announces Two Missions under Its EUTELSAT Multi-Launch Agreement

TIME AND SPACE
Proxima Centauri might be more sunlike than we thought

Stars with Three Planet-Forming Discs of Gas

TESS will provide exoplanet targets for years to come

The death of a planet nursery?

TIME AND SPACE
Lego-like wall produces acoustic holograms

U.S. State Dept. approves $194 million radar sale to Kuwait

Pushing the boundaries of magnet design

Polymer breakthrough to improve things we use everyday









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.