. 24/7 Space News .
TIME AND SPACE
Is it possible to borrow energy from an empty space
by Staff Writers
Vienna, Austria (SPX) Oct 03, 2019

According to quantum physics, empty space is more complicated than one might think.

Energy is a quantity that must always be positive - at least that's what our intuition tells us. If every single particle is removed from a certain volume until there is nothing left that could possibly carry energy, then a limit has been reached. Or has it? Is it still possible to extract energy even from empty space?

Quantum physics has shown time and again that it contradicts our intuition - and this is also true in this case. Under certain conditions negative energies are allowed, at least in a certain range of space and time.

An international research team at the TU Vienna, the Universite libre de Bruxelles (Belgium) and the IIT Kanpur (India) have now investigated the extent to which negative energy is possible. It turns out that no matter which quantum theories are considered, no matter what symmetries are assumed to hold in the universe, there are always certain limits to "borrowing" energy. Locally, the energy can be less than zero, but like money borrowed from a bank, this energy must be "paid back" in the end.

Repulsive Gravity
"In the theory of general relativity, we usually assume that the energy is greater than zero, at all times and everywhere in the universe," says Prof. Daniel Grumiller from the Institute for Theoretical Physics at the TU Wien (Vienna). This has a very important consequence for gravity: Energy is linked to mass via the formula E=mc. Negative energy would therefore also mean negative mass. Positive masses attract each other, but with a negative mass, gravity could suddenly become a repulsive force.

Quantum theory, however, allows negative energy. "According to quantum physics, it is possible to borrow energy from a vacuum at a certain location, like money from a bank," says Daniel Grumiller. "For a long time, we did not now about the maximum amount of this kind of energy credit and about possible interest rates that have to be paid. Various assumptions about this "interest" (known in the literature as "Quantum Interest") have been published, but no comprehensive result has been agreed upon.

The so-called "Quantum Null Energy Condition" (QNEC), which was proven in 2017, prescribes certain limits for the "borrowing" of energy by linking relativity theory and quantum physics: An energy smaller than zero is thus permitted, but only in a certain range and only for a certain time. How much energy can be borrowed from a vacuum before the energetic credit limit has been exhausted depends on a quantum physical quantity, the so-called entanglement entropy.

"In a certain sense, entanglement entropy is a measure of how strongly the behavior of a system is governed by quantum physics," says Daniel Grumiller. "If quantum entanglement plays a crucial role at some point in space, for example close to the edge of a black hole, then a negative energy flow can occur for a certain time, and negative energies become possible in that region."

Grumiller was now able to generalize these special calculations together with Max Riegler and Pulastya Parekh. Max Riegler completed his dissertation in the research group of Daniel Grumiller at the TU Wien and is now working as a postdoc in Harvard. Pulastya Parekh from the IIT in Kanpur (India) was a guest at the Erwin Schrodinger Institute and at the TU Wien.

"All previous considerations have always referred to quantum theories that follow the symmetries of Special Relativity. But we have now been able to show that this connection between negative energy and quantum entanglement is a much more general phenomenon," says Grumiller. The energy conditions that clearly prohibit the extraction of infinite amounts of energy from a vacuum are valid for very different quantum theories, regardless of symmetries.

The law of energy conservation cannot be outwitted
Of course, this has nothing to do with mystical "over unity machines" that allegedly generate energy out of nothing, as they are repeatedly presented in esoteric circles.

"The fact that nature allows an energy smaller than zero for a certain period of time at a certain place does not mean that the law of conservation of energy is violated," stresses Daniel Grumiller.

"In order to enable negative energy flows at a certain location, there must be compensating positive energy flows in the immediate vicinity."

Even if the matter is somewhat more complicated than previously thought, energy cannot be obtained from nothing, even though it can become negative. The new research results now place tight bounds on negative energy, thereby connecting it with quintessential properties of quantum mechanics.


Related Links
Vienna University of Technology
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Neutrino produced in a cosmic collider far away
Bonn, Germany (SPX) Oct 03, 2019
The neutrino event IceCube 170922A, detected at the IceCube Neutrino Observatory at the South Pole, appears to originate from the distant active galaxy TXS 0506+056, at a light travel distance of 3.8 billion light-years. TXS 0506+056 is one of many active galaxies and it remained a mystery, why and how only this particular galaxy generated neutrinos so far. An international team of researchers led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, studied high-res ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
For scientists, failure can pay dividends down the road

The first humans in space

NASA astronaut Nick Hague, crewmates return safely from ISS

First Arab on ISS returns to Earth

TIME AND SPACE
Space Launch System mock up arrives at Kennedy for testing

Artemis Generation takes on NASA Student Launch: 64 teams to compete

SpaceX Falcon 9 rocket to blast off in 2021 with private lunar lander

Italy signs first ever agreement with Virgin to launch suborbital research missions

TIME AND SPACE
InSight 'hears' peculiar sounds on Mars

A fresh attempt for the first 'Mole' on Mars

Far out: Bosnian village tickled to share name with Mars crater

Trump marks Mars as next target, Moon 'not so exciting'

TIME AND SPACE
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

TIME AND SPACE
Talking space with the next generation in Europe

Playmobil go above and beyond with ESA's Luca Parmitano

NewSpace will eliminate sun-synchronous orbits

Australian Government commits to join NASA in Lunar exploration and beyond

TIME AND SPACE
Electronic solid could reduce carbon emissions in fridges and air conditioners

German chemical industry sketches costly carbon-neutral path

Astroscale and Southampton jointly advance business case for active debris removal services

ESA selects AdaCore's qualified multitasking solution for spacecraft software development

TIME AND SPACE
A planet that should not exist

Many gas giant exoplanets waiting to be discovered

Giant exoplanet around tiny star challenges understanding of how planets form

When dwarf stars give birth to giant planets

TIME AND SPACE
NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.