. 24/7 Space News .
When dwarf stars give birth to giant planets
by Staff Writers
Heidelberg, Germany (SPX) Sep 27, 2019

Comparison of GJ 3512 to the Solar System and other nearby red-dwarf planetary systems. Planets around solar-mass stars can grow until they start accreting gas and become giant planets such as Jupiter, in a few millions of years. However, up to now astronomers suspected that, except for some rare exceptions like GJ 876, small stars such as Proxima, TRAPPIST-1, Teegardern's star, and GJ 3512 were not able to form Jupiter mass planets.

Astronomers of the CARMENES consortium have discovered a new exoplanet that should not exist according to current knowledge. The research group, which includes the Max Planck Institute for Astronomy (MPIA, Heidelberg), found a gaseous planet whose mass is unusually large compared to its host star GJ 3512.

The scientists conclude that this planet probably originated from a gravitationally unstable disk of gas and dust around the then still young dwarf star. This contradicts the currently, widely accepted model of planet formation, which requires a solid core to collect surrounding gas.

Astronomers are certain that planets are a by-product from the process of star formation. They form in the disk from which their parent star also emerged. The predominant model for the formation of planets is based on the notion that an object initially develops from solid particles in the disk. The gravitational pull of this planetary embryo ensures that an atmosphere is formed from the surrounding gas.

Now scientists of the CARMENES consortium led by Juan Carlos Morales, a researcher from the Institute of Space Studies of Catalonia (IEEC) at the Institute of Space Sciences (ICE, CSIC), with contributions from Diana Kossakowski and Hubert Klahr (MPIA) have discovered a gas planet similar to Jupiter that contradicts this model. Instead, it seems to have developed directly out of the disk, without a solid nucleus of condensation.

A Giant Gas Planet in the Neighbourhood of the Solar System
This gas giant, called GJ 3512 b, together with its mother star GJ 3512, is only 9.5 parsecs (30 light-years) away from the Sun and has a mass of at least half of that of Jupiter. It takes 204 days for this planet to complete one orbit.

Considering the planet on its own, GJ 3512 b is not unusual - but the fact that it is orbiting a red dwarf star makes this planet special. GJ 3512 has only 12% of the mass of the Sun, so the maximum mass ratio between the star and the planet is 270. In comparison, the Sun is about 1,050 times heavier than Jupiter.

This detail causes headaches for theoretical physicists. The gas and dust disks from which low-mass stars like GJ 3512 evolve should contain rather little material. In fact, too little, as the models show, to be able to even create planetary embryos that could grow into gas giants such as GJ 3512 b itself.

"One way out would be a very massive disk that has the necessary building blocks in sufficient quantity," explains Hubert Klahr, who heads a working group on the theory of planet formation at the MPIA.

However, if a disk of gas and dust around a star has more than about 1/10 of the stellar mass, the gravitational effect of the star is no longer sufficient to keep the disk stable. The gravity of the disk material itself becomes noticeable and significant. The result is then a gravitational collapse as it happens during star formation. However, such mentioned massive disks have not yet been observed around young dwarf stars.

The Mass of GJ 3512 b Cannot Be Explained via the Standard Model
The situation gets even more difficult because there is evidence for yet another planet in a long-term orbit around GJ 3512. In addition to these two planets, the strongly elliptical orbit of GJ 3512 b [1] suggests that it was once under the gravitational influence of a possible third planet of similar mass.

However, this presumed third planet must have obviously been ejected from the planetary system. This means that in addition to the disk mass required to produce GJ 3512 b, there must have been significantly more matter to create the conditions for the formation of one or even two more planets. This is well outside the boundaries of current stellar and planetary formation models.

Thus, the researchers of MPIA, the University of Lund in Sweden and the University of Bern, who deal with the simulation of the formation of planets, concluded that the core accretion model fails to explain the existence of GJ 3512 b. Therefore, they have investigated the conditions under which the up to now rather neglected scenario of gravitational disk collapse could indeed lead to the formation of a planet such as GJ 3512 b.

Formation by Compression of Disk Material
Using different approaches, they arrived to the same conclusion that GJ 3512 b could have been formed by this process. The regions in the disk beyond 10 au (1 au = 1 astronomical unit: the distance between Earth and Sun) of the central star are very cold with temperatures at about 10 K (-263C).

There, the thermal pressure cannot compensate for the gravitational effect of the material, so that it collapses under its own weight. Subsequently, the young planet must have migrated over long distances to its current position at a distance well below 1 au from its parent star. This, in turn, is compatible with the current models for the development of planetary systems.

GJ 3512 b was discovered with the CARMENES spectrograph using the radial velocity method [2] (Fig. 2). CARMENES records spectra in both visible and infrared light. "Red dwarf stars like GJ 3512 show very active behaviour and generate signals similar to those of planets," explains Diana Kossakowski (MPIA), who was instrumental in the evaluation and the analysis of the data. "The infrared spectra were then important to confirm that what we found is indeed a planet."

"Until now, the only planets whose formation was compatible with disk instabilities were a handful of young, hot and very massive planets far away from their host stars," Hubert Klahr points out. "With GJ 3512 b, we now have an extraordinary candidate for a planet that could have emerged from the instability of a disk around a star with very little mass. This find prompts us to review our models."

Research Report: "A Giant Exoplanet Orbiting a Very-Low-Mass Star Challenges Planet Formation Models"

Related Links
Max Planck Institute For Astronomy
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Research redefines lower limit for planet size habitability
Boston MA (SPX) Sep 12, 2019
In The Little Prince, the classic novella by Antoine de Saint-Exupery, the titular prince lives on a house-sized asteroid so small that he can watch the sunset any time of day by moving his chair a few steps. Of course, in real life, celestial objects that small can't support life because they don't have enough gravity to maintain an atmosphere. But how small is too small for habitability? In a recent paper, Harvard University researchers described a new, lower size limit for planets to main ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Stars in its eyes, UAE celebrates its first astronaut in space

Researcher explores better use of microbes for space travel

First Arab set for ISS says voyage will make 'history'

Japanese, Russian rockets prepare to launch cargo and crew this week

After rollout, Soyuz rocket set to launch new crew to space station

Unmanned Japan craft launched toward space station: operator

Tunnel 9 personnel provide guidance for hypersonic experiment

Pad 39B water flow test comes through loud and clear

Trump marks Mars as next target, Moon 'not so exciting'

Carbon Dioxide Conversion Challenge could help human explorers live on Mars

Marvellous Mars from the North Pole to the Southern Highlands

Drones probe dust devils to understand Mars's atmosphere

China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

Australian Government commits to join NASA in Lunar exploration and beyond

First launch of UK's OneWeb satellites from Baikonur planned for Dec 19

Iridium and OneWeb to collaborate on a global satellite services offering

Winning bootcamp ideas at Phi-week

Gem-like nanoparticles of precious metals shine as catalysts

New global Space Safety Coalition established

MIT engineers develop 'blackest black' material to date

Mining industry seeks to polish tarnished reputation

Looking for alien lurkers

Researchers mix RNA and DNA to study how life's process began billions of years ago

Research redefines lower limit for planet size habitability

First Water Detected on Planet in the Habitable Zone

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts

ALMA shows what's inside Jupiter's storms

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.