. 24/7 Space News .
TECH SPACE
How roads can help cool sizzling cities
by Staff Writers
New Brunswick NJ (SPX) Aug 05, 2019

file illustration only

Special permeable concrete pavement can help reduce the "urban heat island effect" that causes cities to sizzle in the summer, according to a Rutgers-led team of engineers. Impermeable pavement made of concrete or asphalt covers more than 30 percent of most urban areas and can exceed 140 degrees Fahrenheit in the summertime. It heats the air, posing human health risks, and surface runoff, threatening aquatic life.

In cities with 1 million or more people, average air temperatures can be 1.8 to 5.4 degrees Fahrenheit higher than in less densely populated areas. The difference can be up to 22 degrees at night.

The heat can increase peak demand for energy in the summertime, air conditioning costs, air pollution and greenhouse gas emissions, heat-related illness and deaths, and water pollution, according to the U.S. Environmental Protection Agency.

The engineering team at Rutgers developed designs for permeable concrete that is highly effective in handling heat. Permeable pavement contains large connected pores, allowing water to drain through and reducing pavement temperature. Water in pores will also evaporate, reducing pavement surface temperature. Moreover, permeable concrete pavement does a better job reflecting heat than asphalt pavement.

The study found that permeable concrete pavement gives off slightly more heat on sunny days compared with conventional concrete pavement, but 25 to 30 percent less heat on days after rainfall. The engineers improved the design of permeable concrete with high thermal conductivity - meaning it can transfer heat more quickly to the ground - further reducing heat output by 2.5 percent to 5.2 percent.

"Highly efficient permeable concrete pavement can be a valuable, cost-effective solution in cities to mitigate the urban heat island effect, while benefitting stormwater management and improving water quality," said corresponding author Hao Wang, an associate professor in the Department of Civil and Environmental Engineering in the School of Engineering at Rutgers University-New Brunswick. He is also an affiliated researcher at the Center for Advanced Infrastructure and Transportation.

Incorporating industry byproducts and waste into permeable concrete can increase its economic and environmental benefits. In another study in the Journal of Cleaner Production, Wang's team designed permeable concrete with fly ash and steel slag to reduce the costs, energy consumption and greenhouse gas emissions linked to raw materials.

Previously, permeable pavement has been used as green infrastructure to reduce stormwater runoff and flooding risk in urban areas. Today, permeable concrete is mainly used in lightly trafficked areas, such as sidewalks, parking lots and rest areas. The Rutgers-led team is studying how to make permeable concrete stronger and more durable so it can be used in urban streets.

Their study appears in the Journal of Cleaner Production.

Research paper


Related Links
Rutgers University
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
NUS 'smart' textiles boost connectivity between wearable sensors by 1,000 times
Singapore (SPX) Jul 22, 2019
Over the past decade, a major trend in electronics has been the development of sensors, displays and smart devices which are seamlessly integrated onto the human body. Most of these wearable devices are singularly connected to a user's smart phone and transmit all data via Bluetooth or Wi-Fi signals. But as consumers wear increasing numbers of wearable devices, and as the data they transmit increases in sophistication, more innovative connection methods are being sought after. Now, researchers fro ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Flight by Light: Mission accomplished for LightSail 2

Japan's space agency develops new filter to recycle urine

NASA commercial lunar payload services update

US spacecraft's solar sail successfully deploys

TECH SPACE
China successfully tests accurate landing of rocket debris

First rollout of Ariane 6 mobile gantry

3D printed rocket fuel comparison at James Cook University

Japan's MOMO-F4 private rocket falls into ocean minutes after takeoff

TECH SPACE
World first as kits designed to extract metals from the Moon and Mars blast off for space station tests

Mars 2020 rover does biceps curls

Europe prepares for Mars courier

Fueling of NASA's Mars 2020 rover power system begins

TECH SPACE
China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

TECH SPACE
Communications satellite firm OneWeb plans to start monthly launches in December

OneWeb and Airbus start up world's first high-volume satellite production facility in Florida

Why isn't Australia in deep space?

Maintaining large-scale satellite constellations using logistics approach

TECH SPACE
Camera can watch moving objects around corners

AFRL looks to fine tune process of 3D printing composite inks

Lockheed contracted by Northrop Grumman for E-2D Hawkeye radars

Finding alternatives to diamonds for drilling

TECH SPACE
Pre-life building blocks spontaneously align in evolutionary experiment

Microbiologists uncover mechanisms of magnetic bacteria

New method for exoplanet stability analysis

TESS finds 'missing link' planets

TECH SPACE
Jupiter's auroras powered by alternating current

Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.