. 24/7 Space News .
STELLAR CHEMISTRY
How Deadly Would A Nearby Gamma Ray Burst Be?
by Elizabeth Howell for Astrobiology Magazine
Moffett Field CA (SPX) Oct 19, 2016


Artist's impression of a gamma ray burst hitting the Earth. The gamma rays would trigger changes in the Earth's atmosphere. Image courtesy NASA.

Despite the obvious doom and gloom associated with mass extinctions, they have a tendency to capture our imagination. After all, the sudden demise of the dinosaurs, presumably due to an asteroid strike, is quite an enthralling story.

But not all mass extinctions are quite as dramatic and not all have an easily identified culprit. The Ordovician extinction - one of the "big five" in Earth's history - occurred around 450 million years ago when the population of marine species plummeted. Evidence suggests that this occurred during an ice age and a gamma ray burst is one of several possible mechanisms that may have triggered this extinction event.

Gamma ray bursts (GRBs) are the brightest electromagnetic blasts known to occur in the Universe, and can originate from the collapse of the most massive types of stars or from the collision of two neutron stars. Supernovae are stellar explosions that also can send harmful radiation hurtling towards Earth. Both GRBs and supernovae are usually observed in distant galaxies, but can pose a threat if they occur closer to home, where they can strip the Earth's upper atmosphere of its protective ozone layer leaving life exposed to harmful ultraviolet radiation from the Sun.

A new paper, titled "Ground-Level Ozone Following Astrophysical Ionizing Radiation Events - An Additional Biological Hazard?" published in the journal Astrobiology took a look at the ramifications of a nearby GRB or supernova and the effects on life. The research was funded by the Exobiology and Evolutionary Biology element of the NASA Astrobiology Program.

Less ozone there, more ozone here
Normally, the ozone layer in the upper atmosphere shields the Earth's surface from harmful ultraviolet light. But a GRB or supernova would quickly eviscerate that layer. As the UV rays penetrate the planet's surface they would break apart oxygen molecules and ground-level ozone would form, according to Washburn University astrophysicist Brian Thomas.

We see this kind of ozone on hot, polluted days when smog alerts warn us to stay indoors for health reasons. But would the ground-level ozone created after a GRB pose a longterm biological threat? Thomas and his colleague Byron Goracke investigated the severity of this ground-level ozone and its potential effects on life using an atmospheric model to simulate a particular case of a GRB occurring over the South Pole.

"A GRB could happen over any latitude or time but we chose the South Pole mainly to look at a very high depletion case," explains Thomas. "When the radiation enters the atmosphere over a pole, the depletion is concentrated there instead of spread around the globe."

This is because the radiation produces chemical changes in the middle atmosphere, and atmospheric transport from this region is mainly towards the pole making the effect of the GRB most extreme in this location. A burst at the South Pole fits in with theories of the Ordovician extinction because the measured extinction rates match the models that predicts latitude-dependent biological damage.

Thomas and his team of researchers used computer models to determine that the amount of ozone present in the lower atmosphere following a GRB concentrated on the South Pole is around 10 parts per billion (ppb) and this amount varies with the seasons.

However, it takes at least 30 ppb of ozone to increase the risk of death due to respiratory failure in humans. Ground-level ozone can also damage plants by reducing chlorophyll production or killing the cells outright, but once again there needs to be at least 30 ppb in the atmosphere before ozone becomes a risk to vegetation.

Ozone is also water soluble, which is particularly relevant to the Ordovician mass extinction as most life at the time was marine life. If all of the 10 ppb of ozone generated by a GRB became dissolved in the oceans, it would still only have a very minor impact, if any, on some bacteria and fish larvae, and wouldn't have played a part in the Ordovician mass extinction. It's quite clear, therefore, that a GRB event alone does not cause the kind of elevated ground-level ozone that's deadly to life.

However, this negative result is still vital to understanding what would or wouldn't happen to the Earth's atmosphere and its inhabitants following the energy from a GRB or supernova reaching our planet. A GRB would deplete the ozone layer in the upper atmosphere, allowing harmful UV radiation to reach the ground and thus have dire consequences for life. However, the ground-level ozone caused by the GRB would not be an additional hazard for life.

Understanding what causes mass extinctions is also important for the search for life in the Universe. Discovering a planet that ticks all the boxes for habitability may sound promising, but perhaps less so if a GRB or supernova recently occurred nearby. In the hunt for life we also need to consider the possibility that any life that might have existed on a distant planet could already be extinct.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Astrobiology Magazine
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Supercomputers fire lasers to shoot gamma ray beam
Austin TX (SPX) Jul 13, 2016
Ever play with a magnifying lens as a kid? Imagine a lens as big as the Earth. Now focus sunlight down to a pencil tip. That still wouldn't be good enough for what some Texas scientists have in mind. They want to make light even 500 times more intense. And they say it could open the door to the most powerful radiation in the universe: gamma rays. Comic book readers might know about gamma r ... read more


STELLAR CHEMISTRY
Spectacular Lunar Grazing Occultation of Bright Star on Oct. 18

Hunter's Supermoon to light up Saturday night sky

Small Impacts Are Reworking Lunar Soil Faster Than Scientists Thought

A facelift for the Moon every 81,000 years

STELLAR CHEMISTRY
Euro-Russian craft enters Mars orbit, but lander's fate unknown

Anxious wait for news of Mars lander's fate

What! - Go To Mars?

Modeling floods that formed canyons on Earth and Mars

STELLAR CHEMISTRY
Beaches, skiing and tai chi: Club Med, Chinese style

NASA begins tests to qualify Orion parachutes for mission with crew

New Zealand government open-minded on space collaboration

Growing Interest: Students Plant Seeds to Help NASA Farm in Space

STELLAR CHEMISTRY
Chinese astronauts reach orbiting lab: Xinhua

Astronauts enjoy range of delicacies on Shenzhou XI

China to enhance space capabilities with launch of Shenzhou-11

China launches 2 astronauts for 33-day mission

STELLAR CHEMISTRY
Two Russians, one American blast off to ISS

Tools Drive NASA's TReK to New Discoveries

Hurricane Nicole delays next US cargo mission to space

Automating sample testing thanks to space

STELLAR CHEMISTRY
Swedish Space Corporation Celebrates 50th Anniversary of Esrange Space Center

US-Russia Standoff Leaves NASA Without Manned Launch Capabilities

Ariane 5 ready for first Galileo payload

ILS Announces Two Missions under Its EUTELSAT Multi-Launch Agreement

STELLAR CHEMISTRY
Proxima Centauri might be more sunlike than we thought

Stars with Three Planet-Forming Discs of Gas

TESS will provide exoplanet targets for years to come

The death of a planet nursery?

STELLAR CHEMISTRY
Lego-like wall produces acoustic holograms

U.S. State Dept. approves $194 million radar sale to Kuwait

Pushing the boundaries of magnet design

Polymer breakthrough to improve things we use everyday









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.