Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



CARBON WORLDS
Graphene sheets capture cells efficiently
by Staff Writers
Boston MA (SPX) Mar 07, 2017


Mild heating of graphene oxide sheets makes it possible to bond particular compounds to the sheets' surface, a new study shows. These compounds in turn select and bond with specific molecules of interest, including DNA and proteins, or even whole cells. In this image the treated graphene oxide on the right is nearly twice as efficient at capturing cells as the untreated material on the left. Image courtesy of the researchers.

A single cell can contain a wealth of information about the health of an individual. Now, a new method developed at MIT and National Chiao Tung University could make it possible to capture and analyze individual cells from a small sample of blood, potentially leading to very low-cost diagnostic systems that could be used almost anywhere.

The new system, based on specially treated sheets of graphene oxide, could ultimately lead to a variety of simple devices that could be produced for as little as $5 apiece and perform a variety of sensitive diagnostic tests even in places far from typical medical facilities.

The material used in this research is an oxidized version of the two-dimensional form of pure carbon known as graphene, which has been the subject of widespread research for over a decade because of its unique mechanical and electrical characteristics.

The key to the new process is heating the graphene oxide at relatively mild temperatures. This low-temperature annealing, as it is known, makes it possible to bond particular compounds to the material's surface.

These compounds in turn select and bond with specific molecules of interest, including DNA and proteins, or even whole cells. Once captured, those molecules or cells can then be subjected to a variety of tests.

Other researchers have been trying to develop diagnostic systems using a graphene oxide substrate to capture specific cells or molecules, but these approaches used just the raw, untreated material.

Despite a decade of research, other attempts to improve such devices' efficiency have relied on external modifications, such as surface patterning through lithographic fabrication techniques, or adding microfluidic channels, which add to the cost and complexity. The new finding offers a mass-producible, low-cost approach to achieving such improvements in efficiency.

The heating process changes the material's surface properties, causing oxygen atoms to cluster together, leaving spaces of bare graphene between them. This makes it relatively easy to attach other chemicals to the surface, which can interact with specific molecules of interest. The new research demonstrates how that basic process could potentially enable a suite of low-cost diagnostic systems, for example for cancer screening or treatment follow-up.

For this proof-of-concept test, the team used molecules that can quickly and efficiently capture specific immune cells that are markers for certain cancers. They were able to demonstrate that their treated graphene oxide surfaces were almost twice as effective at capturing such cells from whole blood, compared to devices fabricated using ordinary, untreated graphene oxide, says Bardhan, the paper's lead author.

The system has other advantages as well, Bardhan says. It allows for rapid capture and assessment of cells or biomolecules under ambient conditions within about 10 minutes and without the need for refrigeration of samples or incubators for precise temperature control.

And the whole system is compatible with existing large-scale manufacturing methods, making it possible to produce diagnostic devices for less than $5 apiece, the team estimates. Such devices could be used in point-of-care testing or resource-constrained settings.

Existing methods for treating graphene oxide to allow functionalization of the surface require high temperature treatments or the use of harsh chemicals, but the new system, which the group has patented, requires no chemical pretreatment and an annealing temperature of just 50 to 80 degrees Celsius (122 to 176 F).

While the team's basic processing method could make possible a wide variety of applications, including solar cells and light-emitting devices, for this work the researchers focused on improving the efficiency of capturing cells and biomolecules that can then be subjected to a suite of tests.

They did this by enzymatically coating the treated graphene oxide surface with peptides called nanobodies - subunits of antibodies, which can be cheaply and easily produced in large quantities in bioreactors and are highly selective for particular biomolecules.

The researchers found that increasing the annealing time steadily increased the efficiency of cell capture: After nine days of annealing, the efficiency of capturing cells from whole blood went from 54 percent, for untreated graphene oxide, to 92 percent for the treated material.

The team then performed molecular dynamics simulations to understand the fundamental changes in the reactivity of the graphene oxide base material. The simulation results, which the team also verified experimentally, suggested that upon annealing, the relative fraction of one type of oxygen (carbonyl) increases at the expense of the other types of oxygen functional groups (epoxy and hydroxyl) as a result of the oxygen clustering. This change makes the material more reactive, which explains the higher density of cell capture agents and increased efficiency of cell capture.

"Efficiency is especially important if you're trying to detect a rare event," Belcher says. "The goal of this was to show a high efficiency of capture." The next step after this basic proof of concept, she says, is to try to make a working detector for a specific disease model.

In principle, Bardhan says, many different tests could be incorporated on a single device, all of which could be placed on a small glass slide like those used for microscopy.

The findings are reported in the journal ACS Nano in a paper co-authored by Neelkanth Bardhan, an MIT postdoc, and Priyank Kumar PhD '15, now a postdoc at ETH Zurich; Angela Belcher, the James Mason Crafts Professor in biological engineering and materials science and engineering at MIT and a member of the Koch Institute for Integrative Cancer Research; Jeffrey Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems at MIT; Hidde L. Ploegh, a professor of biology and member of the Whitehead Institute for Biomedical Research; Guan-Yu Chen, an assistant professor in biomedical engineering at National Chiao Tung University in Taiwan; and Zeyang Li, a doctoral student at the Whitehead Institute.

Research paper

CARBON WORLDS
Czech scientists build non-metal magnet out of carbon
Prague (UPI) Mar 06, 2017
Scientists in the Czech Republic created magnetized carbon by treating graphene layers with non-metallic elements. Their invention, detailed in the journal Nature Communications, is the first non-metal magnet to maintain its magnetic properties at room temperature. Researchers say the discovery has a wide array of potential applications in the fields of biomedicine and electronics. ... read more

Related Links
Massachusetts Institute of Technology
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Orion spacecraft achieves key safety milestone

The NASA Imager Dentists Use Daily

Marshall shakes, packs, ships and tracks NASA payloads

NASA and SpaceX gives ASU a competitive edge in technological innovation

CARBON WORLDS
SpaceX says it will fly civilians to the moon next year

Moon tourists risk rough ride, experts say

Flight Hardware for NASA's Space Launch System on Its Way to Cape

Spacex To Send Privately Crewed Dragon Spacecraft Beyond The Moon Next Year

CARBON WORLDS
NASA Orbiter Steers Clear of Mars Moon Phobos

Remnants of a mega-flood on Mars

Science checkout continues for ExoMars orbiter

NASA Explores Opportunity for Smaller Experiments to 'Hitch a Ride' to Mars

CARBON WORLDS
Thinking Big: China Hopes to Conduct 2nd Mission to Mars by 2030

China to Conduct Test Flight of CZ-8 Carrier Rocket by 2018

China to launch first high-throughput communications satellite in April

Chinese cargo spacecraft set for liftoff in April

CARBON WORLDS
OneWeb, Intelsat merge to advance satellite internet

GomSpace to supply satellites for Sky and Space Global constellation

Kacific places order with Boeing for a high throughput satellite

ESA affirms Open Access policy for images, videos and data

CARBON WORLDS
Coffee-ring effect leads to crystallization control

3-D printing with plants

Researchers remotely control sequence in which 2-D sheets fold into 3-D structures

Scientists demonstrate improved particle warning to protect astronauts

CARBON WORLDS
Faraway Planet Systems Are Shaped Like the Solar System

The missing link in how planets form

Volcanic hydrogen spurs chances of finding exoplanet life

Evidence of Star Wars-like Planetary System

CARBON WORLDS
Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase

NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement