Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TIME AND SPACE
First experimental proof of a 70 year old physics theory
by Staff Writers
Seoul, South Korea (SPX) Jan 04, 2017


This is a simplified representation of the 2-D magnetic phase transition. Image courtesy IBS. For a larger version of this image please go here.

PARK Je-Geun, Associate Director at the Center for Correlated Electron Systems, within the Institute for Basic Science (IBS), working in collaboration with CHEONG Hyeonsik at Sogang University and PARK Cheol-Hwan at Seoul National University demonstrated the magnetic behavior of a special class of 2D materials. This is the first experimental proof to a theory proposed more than 70 years ago. The paper, describing the experiment, is published in the journal Nano Letters.

Recently, scientists all over the world are investigating the properties and applications of extremely thin 2D materials, just one-atom-thick, like graphene. Studying the properties of 2D materials in comparison with their 3D counterparts raises many thought-provoking questions; one of them concerns magnetic phase transitions.

Some materials are magnetic because of the behavior of the spins of their electrons. In simple terms, spins (spin quantum numbers, or more precisely their associated magnetic moments), are just like tiny magnets, conventionally shown as arrows. At extremely low temperatures, these spins tend to align, lowering the electrons' total energy.

However, above a specific temperature that varies from material to material, spins lose their alignment and become randomly oriented. Similar to how ice loses its internal order and becomes liquid above a certain temperature; 3D magnets also lose their magnetization above a critical temperature. This is called phase transition and is an ever-present process in 3D objects.

However, what happens to 1D and 2D systems at low temperatures? Do they experience a phase transition? In other words, are we going to see a transition from solid to liquid in a chain of water molecules (1D) or in a one-atom thick sheet of water (2D)?

About one century ago, the physicist Wilhelm Lenz asked his student Ernst Ising to solve this problem for 1D systems. Ising explained it in 1925 and concluded that 1D materials do not have phase transitions. Then, Ising tried to grapple with the same question for a particular type of 2D materials. The problem turned out to be much harder.

The solution came in 1943 courtesy of Lars Onsager, who received the Nobel Prize for Chemistry in 1968. Indeed, Onsager found that the materials, which follow the Ising spin model, have a phase transition.

However, despite the huge importance this theory has in the following development of the whole physics of phase transitions, it has never been tested experimentally using a real magnetic material. "The physics of 2D systems is unique and exciting. The Onsager solution is taught on every advanced statistical mechanics course. That's where I learned this problem.

However, when I discovered much later that it has not been tested experimentally with a magnetic material, I thought it was a shame for experimentalists like me, so it was natural for me to look for a real material to test it," explains PARK Je-Geun.

In order to prove the Onsager model, the research team produced crystals of iron trithiohypophosphate (FePS3) with a technique called chemical vapour transport. The crystals are made of layers bound by weak interactions, known as Van der Waals interactions. Layers can be peeled off from the crystal by using scotch tape, in the same way tape can strip paint from a wall.

The scientists peeled the layers until they were left with just one layer of FePS3 (2D). "We can call these materials magnetic Van der Waals materials or magnetic graphene: they are magnetic and they have easy-to-cleave Van der Waals bonds between layers. They are very rare, and their physics is still unexplored," says the professor.

While there are several methods to measure the magnetic properties of bulk 3D materials, these techniques have no practical use to measure magnetic signals coming from monolayer materials. Therefore, the team used Raman spectroscopy, a technique normally used to measure vibrations inside the material. They used vibrations as an indirect measure of magnetism, the more vibrations, the less magnetization.

Park's team and colleagues first used Raman spectroscopy on bulk 3D FePS3 material at different temperatures and then tested FePS3 2D monolayer. "The test with the bulk sample showed us that the Raman signals can be used as a kind of the fingerprint of phase transition at temperatures around 118 Kelvin, or minus 155 degrees Celsius.

With this confirmation we then measured the monolayer sample and found the same patterns," points out Park. "We conclude that 3D and 2D FePS3 have the same signature of the phase transition visible in the Raman spectrum."

Both in the bulk sample and the monolayer, FePS3' spins are ordered (antiferromagnetic) at very low temperatures, and become disordered (paramagnetic) above 118 degrees Kelvin. "Showing magnetic phase transition with this tour-de-force experiment is a beautiful test for the Onsager solution," concludes the physicist.

In the future, the team would like to study other 2D transition metal materials, going beyond the 2D Ising spin model.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Institute for Basic Science
Understanding Time and Space






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Existence of a short-lived tetraneutron predicted
Moscow, Russia (SPX) Dec 29, 2016
A member of the Lomonosov Moscow State University together with his colleagues, using new interaction between neutrons, have theoretically justified the low-energy tertaneutron resonance obtained recently experimentally. This proves the existence for a very short period of time of a particle consisting of four neutrons. According to the supercomputer simulations, the tetraneutron lifetime is 5+ ... read more


TIME AND SPACE
Space station battery replacements to begin New Year's Eve

Launch of Russia's new progress spacecraft set for February 2

Tech show looks beyond 'smart,' to new 'realities'

'Passengers' and the real-life science of deep space travel

TIME AND SPACE
SpaceX ready to launch again

Europe and Russia looking at Space Tug Project

India to develop large scale solid fuel mixer

Russia won't be leaving Baikonur anytime soon

TIME AND SPACE
Odyssey recovering from precautionary pause in activity

3-D images reveal features of Martian polar ice caps

Small Troughs Growing on Mars May Become 'Spiders'

All eyes on Trump over Mars

TIME AND SPACE
China Plans to Launch 1st Mars Probe by 2020 - State Council Information Office

China to expand int'l cooperation on space sciences

China sees rapid development of space science and technology

China Space Plan to Develop "Strength and Size"

TIME AND SPACE
Airbus DS and Energia eye new medium-class satellite platform

OneWeb announces key funding form SoftBank Group and other investors

Space as a Driver for Socio-Economic Sustainable Development

SoftBank delivers first $1 bn of Trump pledge, to space firm

TIME AND SPACE
Russian static discharge measure unit to prolong satellite equipment lifespan

'Just the first stage': unique 3D-printed Siberian satellite to orbit Earth

How to 3-D print your own sonic tractor beam

Saab, UAE sign radar support deal

TIME AND SPACE
The blob can learn and teach

Searching a sea of 'noise' to find exoplanets - using only data as a guide

Microlensing Study Suggests Most Common Outer Planets Likely Neptune-mass

Exciting new creatures discovered on ocean floor

TIME AND SPACE
Exploring Pluto and the Wild Back Yonder

Juno Captures Jupiter 'Pearl'

Juno Mission Prepares for December 11 Jupiter Flyby

Research Offers Clues About the Timing of Jupiter's Formation




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement