. 24/7 Space News .
CHIP TECH
Extreme conditions in semiconductors
by Staff Writers
Baden-Wurttemberg, Germany (SPX) Aug 03, 2018

file illustration only

Scientists from the University of Konstanz and Paderborn University have succeeded in producing and demonstrating what is known as Wannier-Stark localization for the first time. In doing so, the physicists managed to overcome obstacles that had so far been considered insurmountable in the field of optoelectronics and photonics. Wannier-Stark localization causes extreme imbalance within the electric system of crystalline solids.

"This fundamental effect was predicted more than 80 years ago. But it has remained unclear ever since whether this state can be realized in a bulk crystal, that is, on the level of chemical bonds between atoms", says Professor Alfred Leitenstorfer, Professor of Experimental Physics at the University of Konstanz. Analogues of the effect have so far been demonstrated only in artificial systems like semiconductor superlattices or ultracold atomic gases.

In a bulk solid, Wannier-Stark localization can only be maintained for an extremely short period of time, shorter than a single oscillation of infrared light. Using the ultrafast laser systems at the University of Konstanz, Wannier-Stark localization has now been demonstrated for the first time. The experiment was conducted in a high-purity gallium arsenide crystal grown at ETH Zurich using epitaxial growth. The research results were published in the scientific journal Nature Communications on 23 July 2018.

What is Wannier-Stark localization?
If we tried to picture the atoms of a crystal, it would have to be as a three-dimensional grid composed of small beads that repel each other and are only kept together by rubber bands. The system remains stable as long as the rubber band is as strong as the repulsion is. If this is the case, the beads neither move closer to each other, nor do they move away from each other - the distance between them remains about the same.

Wannier-Stark localization occurs when the rubber bands are removed abruptly. It is the electronic state that happens at the precise moment in time when the rubber bands have already gone but the beads still remain in place: The chemical bonds that hold the crystal together have been suspended.

If this state is maintained for too long, the beads will break apart and the crystal dissolves. To analyze Wannier-Stark localization, the physicists had to remove the stabilizing structures, capture the system within a fraction of a light oscillation using light pulses, and finally to stabilize it again to prevent the atoms from breaking apart.

The experiment was made possible through the highly intense electric field of an ultrashort infrared light pulse, which is present in the crystal for a few femtoseconds only. "This is what we specialize in: studying phenomena that only exist on very short time scales", explains Alfred Leitenstorfer.

"In perfect insulators and semiconductors, electronic states expand throughout the entire crystal. According to an 80-year-old prediction, this changes as soon as electrical voltage is applied", says Professor Torsten Meier from Paderborn University.

"If the electric field inside the crystal is strong enough, the electronic states can be localized to a few atoms. This state is called the Wannier-Stark ladder", explains the physicist, who is also Vice-President for International Relations at Paderborn University.

New electronic characteristics
"A system that deviates so extremely from its equilibrium has completely new characteristics", says Alfred Leitenstorfer about why this state is so interesting from a scientific perspective.

The short-lived Wannier-Stark localization correlates with drastic changes to the electronic structure of the crystal and results, for example, in extremely high optical nonlinearity. The scientists also assume that this state is chemically particularly reactive.

The first-ever experimental realization of Wannier-Stark localization in a gallium arsenide crystal was made possible through highly intense Terahertz radiation with field intensities of more than ten million volts per centimetre. The application of more ultrashort optical light pulses resulted in changes to the crystal's optical characteristics, which was instrumental to proving this state.

"If we use suitably intense light pulses consisting of a few oscillations lasting some ten femtoseconds only, we can realize the Wannier-Stark localization for a short period of time", says Alfred Leitenstorfer.

"Our readings match the theoretical considerations and simulations carried out both by my own research team and by that of my colleague, Professor Wolf Gero Schmidt", adds Torsten Meier. The researchers are planning to study the extreme state of Wannier-Stark localization on the atomic scale in more detail in the future and intend to make its particular characteristics usable.

Research paper


Related Links
University of Konstanz
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
China 'waterfall' skyscraper hit by torrent of ridicule
Beijing (AFP) July 27, 2018
A skyscraper in southwest China that boasts what its owner calls the world's largest man-made waterfall has become the latest example of over-the-top architecture to draw national ridicule. The tower in the city of Guiyang was built with a spectacular 108-metre (350-feet) cascade tumbling down its face - but cash flow could prove a problem for the ostentatious design. Although the Liebian International Building is not yet finished, the water feature was completed two years ago. However it h ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
NASA, Commercial Partners Progress to Human Spaceflight Home Stretch

Space Station experiment reaches ultracold milestone

Cygnus concludes 9th Cargo Supply Mission to Space Station

Space tourism economics - financing and regulating trips to the final frontier

CHIP TECH
First SLS Core Stage flight hardware complete, ready for joining

NASA certifies Russia's RD-180 rocket engines for manned flights

SpaceX launches, lands rocket in challenging conditions

Latest Blue Origin Launch Tests Technologies of Interest to Space Exploration

CHIP TECH
Scientists looking for ways to grow crops on Red Planet

Students can now build their own rover model

Evidence of subsurface Martian liquid water bolstered

Life on Mars: Japan astronaut dreams after lake discovery

CHIP TECH
China developing in-orbit satellite transport vehicle

PRSS-1 Satellite in Good Condition

China readying for space station era: Yang Liwei

China launches new space science program

CHIP TECH
Thales and SSL form consortium to further design and develop Telesat's LEO constellation

We'll soon have ten times more satellites in orbit - here's what that means

Aerospace Workforce Training A National Mandate for 2018

Rockwell Collins and Iridium Partner to Deliver Next-Generation Aviation Services

CHIP TECH
Tech titans jostle as Pentagon calls for cloud contract bids

Lasers write better anodes

Root vegetables to help make new buildings stronger, greener

Smart machine components alert users to damage and wear

CHIP TECH
Exoplanet detectives create reference catalog of spectra and geometric albedos

NASA's TESS spacecraft starts science operations

How Can You Tell If That ET Story Is Real

WSU researcher sees possibility of moon life

CHIP TECH
New Horizons team prepares for stellar occultation ahead of Ultima Thule flyby

High-Altitude Jovian Clouds

'Ribbon' wraps up mystery of Jupiter's magnetic equator

The True Colors of Pluto and Charon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.