. 24/7 Space News .
WATER WORLD
Engineers upgrade ancient, sun-powered tech to purify water
by Staff Writers
Buffalo NY (SPX) May 04, 2018

The new water purification technique involves draping a sheet of carbon-dipped paper in an upside-down "V." The paper's bottom edges soak up water, while the carbon coating absorbs solar energy and transforms it into heat for evaporation.

The idea of using energy from the sun to evaporate and purify water is ancient. The Greek philosopher Aristotle reportedly described such a process more than 2,000 years ago.

Now, researchers are bringing this technology into the modern age, using it to sanitize water at what they report to be record-breaking rates.

By draping black, carbon-dipped paper in a triangular shape and using it to both absorb and vaporize water, they have developed a method for using sunlight to generate clean water with near-perfect efficiency.

"Our technique is able to produce drinking water at a faster pace than is theoretically calculated under natural sunlight," says lead researcher Qiaoqiang Gan, PhD, associate professor of electrical engineering in the University at Buffalo School of Engineering and Applied Sciences.

As Gan explains, "Usually, when solar energy is used to evaporate water, some of the energy is wasted as heat is lost to the surrounding environment. This makes the process less than 100 percent efficient. Our system has a way of drawing heat in from the surrounding environment, allowing us to achieve near-perfect efficiency."

The low-cost technology could provide drinking water in regions where resources are scarce, or where natural disasters have struck. The advancements are described in a study published on May 3 in the journal Advanced Science.

The project, funded by the National Science Foundation (NSF), was a collaboration between UB, Fudan University in China and the University of Wisconsin-Madison. UB electrical engineering PhD graduate Haomin Song and PhD candidate Youhai Liu were the study's first authors.

Gan, Song and other colleagues have launched a startup, Sunny Clean Water, to bring the invention to people who need it. With support from the NSF Small Business Innovation Research program, the company is integrating the new evaporation system into a prototype of a solar still, a sun-powered water purifier.

"When you talk to government officials or nonprofits working in disaster zones, they want to know: 'How much water can you generate every day?' We have a strategy to boost daily performance," Song says. "With a solar still the size of a mini fridge, we estimate that we can generate 10 to 20 liters of clean water every single day."

Modernizing an age-old technology
Solar stills have been around for a long time. These devices use the sun's heat to evaporate water, leaving salt, bacteria and dirt behind. Then, the water vapor cools and returns to a liquid state, at which point it's collected in a clean container.

The technique has many advantages. It's simple, and the power source - the sun - is available just about everywhere. But unfortunately, even the latest solar still models are somewhat inefficient at vaporizing water.

Gan's team addressed this challenge through a neat, counterintuitive trick: They increased the efficiency of their evaporation system by cooling it down.

A central component of their technology is a sheet of carbon-dipped paper that is folded into an upside-down "V" shape, like the roof of a birdhouse. The bottom edges of the paper hang in a pool of water, soaking up the fluid like a napkin. At the same time, the carbon coating absorbs solar energy and transforms it into heat for evaporation.

As Gan explains, the paper's sloped geometry keeps it cool by weakening the intensity of the sunlight illuminating it. (A flat surface would be hit directly by the sun's rays.) Because most of the carbon-coated paper stays under room temperature, it can draw in heat from the surrounding area, compensating for the regular loss of solar energy that occurs during the vaporization process.

Using this set-up, researchers evaporated the equivalent of 2.2 liters of water per hour for every square meter of area illuminated by the regular sun, higher than the theoretical upper limit of 1.68 liters, according to the new study. The team conducted its tests in the lab, using a solar simulator to generate light at the intensity of one regular sun.

"Most groups working on solar evaporation technologies are trying to develop advanced materials, such as metallic plasmonic and carbon-based nanomaterials," Gan says. "We focused on using extremely low-cost materials and were still able to realize record-breaking performance.

"Importantly, this is the only example I know of where the thermal efficiency of the solar evaporation process is 100 percent when you consider solar energy input. By developing a technique where the vapor is below ambient temperature, we create new research possibilities for exploring alternatives to high-temperature steam generation."

Research paper


Related Links
University at Buffalo
Water News - Science, Technology and Politics


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


WATER WORLD
Flaw found in water treatment method
Baltimore MD (SPX) May 03, 2018
Public water quality has received a lot of attention in recent years as some disturbing discoveries have been made regarding lead levels in cities across the country. Now, a new study from the Johns Hopkins University pinpoints other chemicals in water that are worth paying attention to - and in fact, some of them may be created, ironically, during the water treatment process itself. To rid water of compounds that are known to be toxic, water treatment plants now often use methods to oxidize them, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
'Jedi' calls on Europe to find innovation force

Simulated Countdown Another Step Toward Exploration Mission-1

Aerospace explores next steps in space development

2020 Decadal Survey Missions: At a Glance

WATER WORLD
Meet the nuclear-powered spaceships of the future

Arianespace to launch BSAT-4b; marking the 10th satellite launch for B-SAT

Vostochny Cosmodrome preps for first tourist visit

US Air Force awards nearly $1 bn for hypersonic missile

WATER WORLD
Bernese Mars camera CaSSIS sends first colour images from Mars

A Yellowstone guide to life on Mars

ESA and NASA to investigate bringing martian soil to Earth

Opportuity Mars rover looking for a path of less resistance

WATER WORLD
China unveils underwater astronaut training suit

China's Chang'e-4 relay satellite named "Queqiao"

China outlines roadmap for deep space exploration

Across China: Rocket launch brings back fortune to locals

WATER WORLD
ESA teams ready for space

Aerospace highlights lessons from Public-Private Partnerships in space

Airbus has shipped SES-12 highly innovative satellite to launch base

Storm hunter launched to International Space Station

WATER WORLD
Army researcher uses math to uncover new chemistry

Research team engineers a better plastic-degrading enzyme

New research modernizes rammed earth construction

Progress toward 'infinitely recyclable' plastic

WATER WORLD
Extreme Environment of Danakil Depression Sheds Light on Mars, Titan

Ultrahigh-pressure laser experiments shed light on super-Earth cores

Droids beat astronomers in predicting survivability of exoplanets

Giada Arney Attempts to Answer, "Are We Alone?"

WATER WORLD
What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names

Juno Provides Infrared Tour of Jupiter's North Pole









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.