. 24/7 Space News .
Ultrahigh-pressure laser experiments shed light on super-Earth cores
by Staff Writers
Princeton NJ (SPX) Apr 26, 2018

Stellar dust survey paves way for exoplanet missions
Pasadena CA (JPL) Apr 26, 2018 - Veils of dust wrapped around distant stars could make it difficult for scientists to find potentially habitable planets in those star systems. The Hunt for Observable Signatures of Terrestrial Systems, or HOSTS, survey was tasked with learning more about the effect of dust on the search for new worlds.

The goal is to help guide the design of future planet-hunting missions. In a new paper published in the Astrophysical Journal, HOSTS scientists report on the survey's initial findings.

Using the Large Binocular Telescope Interferometer, or LBTI, on Mount Graham in Arizona, the HOSTS survey determines the brightness of warm dust floating in the orbital planes of other stars (called exozodiacal dust).

In particular, HOSTS has studied dust in nearby stars' habitable zones, where liquid water could exist on the surface of a planet. The LBTI is five to 10 times more sensitive than the previous telescope capable of detecting exozodiacal dust, the Keck Interferometer Nuller.

Among the findings detailed in the new paper, the HOSTS scientists report that a majority of Sun-like stars in their survey do not possess high levels of dust - good news for future efforts to study potentially-habitable planets around those stars. A final report on the full HOSTS survey results is expected early next year.

NASA is taking a multifaceted approach to finding and studying planets outside our solar system. On April 18, NASA launched its newest planet-hunting observatory, the Transiting Exoplanet Survey Satellite (TESS), which is expected to find thousands of new exoplanets, mostly around stars smaller than our Sun.

Using high-powered laser beams, researchers have simulated conditions inside a planet three times as large as Earth.

Scientists have identified more than 2,000 of these "super-Earths," exoplanets that are larger than Earth but smaller than Neptune, the next-largest planet in our solar system. By studying how iron and silicon alloys respond to extraordinary pressures, scientists are gaining new insights into the nature of super-Earths and their cores.

"We now have a technique that allows us to directly access the extreme pressures of the deep interiors of exoplanets and measure important properties," said Thomas Duffy, a professor of geosciences at Princeton.

"Previously, scientists were restricted to either theoretical calculations or long extrapolations of low-pressure data. The ability to perform direct experiments allows us to test theoretical results and provides a much higher degree of confidence in our models for how materials behave under these extreme conditions."

The work, which resulted in the highest-pressure X-ray diffraction data ever recorded, was led by June Wicks when she was an associate research scholar at Princeton, working with Duffy and colleagues at Lawrence Livermore National Laboratory and the University of Rochester. Their results were published in the journal Science Advances.

Because super-Earths have no direct analogues in our own solar system, scientists are eager to learn more about their possible structures and compositions, and thereby gain insights into the types of planetary architectures that may exist in our galaxy. But they face two key limitations: we have no direct measurements of our own planetary core from which to extrapolate, and interior pressures in super-Earths can reach more than 10 times the pressure at the center of the Earth, well beyond the range of conventional experimental techniques.

The pressures achieved in this study - up to 1,314 gigapascals (GPa) - are about three times higher than previous experiments, making them more directly useful for modeling the interior structure of large, rocky exoplanets, Duffy said.

"Most high-pressure experiments use diamond anvil cells which rarely reach more than 300 GPa," or 3 million times the pressure at the surface of the Earth, he said. Pressures in Earth's core reach up to 360 GPa.

"Our approach is newer, and many people in the community are not as familiar with it yet, but we have shown in this (and past) work that we can routinely reach pressures above 1,000 GPa or more (albeit only for a fraction of a second). Our ability to combine this very high pressure with X-ray diffraction to obtain structural information provides us with a novel tool for exploring planetary interiors," he said.

The researchers compressed two samples for only a few billionths of a second, just long enough to probe the atomic structure using a pulse of bright X-rays. The resulting diffraction pattern provided information on the density and crystal structure of the iron-silicon alloys, revealing that the crystal structure changed with higher silicon content.

"The method of simultaneous X-ray diffraction and shock experiments is still in its infancy, so it's exciting to see a 'real-world application' for the Earth's core and beyond," said Kanani Lee, an associate professor of geology and geophysics at Yale University who was not involved in this research.

This new technique constitutes a "very significant" contribution to the field of exoplanet research, said Diana Valencia, a pioneer in the field and an assistant professor of physics at the University of Toronto-Scarborough, who was not involved in this research.

"This is a good study because we are not just extrapolating from low pressures and hoping for the best. This is actually giving us that 'best,' giving us that data, and it therefore constrains our models better."

Wicks and her colleagues directed a short but intense laser beam onto two iron samples: one alloyed with 7 weight-percent silicon, similar to the modeled composition of Earth's core, and another with 15 weight-percent silicon, a composition that is possible in exoplanetary cores.

A planet's core exerts control over its magnetic field, thermal evolution and mass-radius relationship, Duffy said.

"We know that the Earth's core is iron alloyed with about 10 percent of a lighter element, and silicon is one of the best candidates for this light element both for Earth and extrasolar planets."

The researchers found that at ultrahigh pressures, the lower-silicon alloy organized its crystal structure in a hexagonal close-packed structure, while the higher-silicon alloy used body-centered cubic packing. That atomic difference has enormous implications, said Wicks, who is now an assistant professor at Johns Hopkins University.

"Knowledge of the crystal structure is the most fundamental piece of information about the material making up the interior of a planet, as all other physical and chemical properties follow from the crystal structure," she said.

Wicks and her colleagues also measured the density of the iron-silicon alloys over a range of pressures. They found that at the highest pressures, the iron-silicon alloys reach 17 to 18 grams per cubic centimeter - about 2.5 times as dense as on the surface of Earth, and comparable to the density of gold or platinum at Earth's surface. They also compared their results to similar studies done on pure iron and discovered that the silicon alloys are less dense than unalloyed iron, even under extreme pressures.

"A pure iron core is not realistic," said Duffy, "as the process of planetary formation will inevitably lead to the incorporation of significant amounts of lighter elements. Our study is the first to consider these more realistic core compositions."

The researchers calculated the density and pressure distribution inside super-Earths, taking into account the presence of silicon in the core for the first time. They found that incorporating silicon increases the modeled size of a planetary core but reduces its central pressure.

Future research will investigate how other light elements, such as carbon or sulfur, affect the structure and density of iron at ultrahigh pressure conditions. The researchers also hope to measure other key physical properties of iron alloys, to further constrain models of exoplanets' interiors.

"For a geologist, the discovery of so many extrasolar planets has opened the door to a new field of exploration," said Duffy.

"We now realize that the varieties of planets that are out there go far beyond the limited examples in our own solar system, and there is a much broader field of pressure, temperature and composition space that must be explored.

"Understanding the interior structure and composition of these large, rocky bodies is necessary to probe fundamental questions such as the possible existence of plate tectonics, magnetic field generation, their thermal evolution and even whether they are potentially habitable."

Research Report: "Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions"

Related Links
Princeton University
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Once upon a time, an exoplanet was discovered
Washington DC (SPX) Apr 17, 2018
In recent history, a very important achievement was the discovery, in 1995, of 51 Pegasi b, the first extrasolar planet ever found around a normal star other than the Sun. In a paper published in EPJ H, Davide Cenadelli from the Aosta Valley Astronomical Observatory (Italy) interviews Michel Mayor from Geneva Observatory (Switzerland) about his personal recollections of discovering this exoplanet. They discuss how the development of better telescopes made the discovery possible. They a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NASA Takes First 3-D Microscopic Image on the Space Station

2020 Decadal Survey Missions: At a Glance

Simulated Countdown Another Step Toward Exploration Mission-1

NASA upgrades Space Station emergency communications ground stations

Vostochny Cosmodrome preps for first tourist visit

Meet the nuclear-powered spaceships of the future

Arianespace to launch BSAT-4b; marking the 10th satellite launch for B-SAT

US Air Force awards nearly $1 bn for hypersonic missile

Opportuity Mars rover looking for a path of less resistance

SwRI's Martian moons model indicates formation following large impact

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

US, Russia likely to go to Mars Together, former NASA astronaut says

First China Aerospace Conference to be held on April 24

Across China: Rocket launch brings back fortune to locals

China unveils underwater astronaut training suit

China Space Agency chief says he expects visit by Russia's Roscosmos

Aerospace highlights lessons from Public-Private Partnerships in space

ESA teams ready for space

Airbus has shipped SES-12 highly innovative satellite to launch base

Storm hunter launched to International Space Station

India recalls GSAT-11 satellite from launch site for more tests

Artificial intelligence accelerates discovery of metallic glass

NanoRacks space station airlock "Bishop" completes CDR, moves to fab stage

Angola loses first satellite, plans successor

Giant group of octopus moms discovered in the deep sea

Molecular evolution: How the building blocks of life may form in space

Are we alone? NASA's new planet hunter aims to find out

We think we're the first advanced earthlings - but how do we really know?

What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names

Juno Provides Infrared Tour of Jupiter's North Pole

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.