. 24/7 Space News .
TECH SPACE
Research team engineers a better plastic-degrading enzyme
by Staff Writers
Golden CO (SPX) May 02, 2018

NREL's Bryon Donohoe and Nic Rorrer punch out coupon samples from a PET bottle to test how effectively the PETase enzyme digests plastic. They and Gregg Beckham are among the international team of researchers who are working to further improve the enzyme to allow it to be used industrially to break down plastics in a fraction of the time. Photo by Dennis Schroeder/NREL

A breakthrough in enzyme research led by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and the United Kingdom's University of Portsmouth has led to an improved variant of an enzyme that can break down ubiquitous plastic bottles made of polyethylene terephthalate, or PET.

While working to solve the crystal structure of PETase - a recently discovered enzyme that digests PET - the team inadvertently engineered an enzyme to be even better at degrading the man-made substance. Although the improvement is modest, this unanticipated discovery suggests that there is much more room to further improve these enzymes, moving scientists closer to solving the problem of an ever-growing amount of discarded plastics that take centuries to biodegrade.

The paper, "Characterization and engineering of a plastic-degrading aromatic polyesterase," was published this week in the Proceedings of the National Academy of Sciences (PNAS). The lead authors from the research team - NREL's Gregg Beckham, University of Portsmouth's John McGeehan, and Lee Woodcock from the University of South Florida - were attempting to understand how PETase evolved from likely working on natural substances to digesting synthetic materials when the serendipitous discovery was made.

The urgency of this work is as striking as the images pulled from recent Research team engineers a better plastic-degrading enzymes: 8 million metric tons of plastic waste, including PET bottles, enter the oceans each year, creating huge man-made islands of garbage. Experts estimate that by 2050, there will be as much waste plastic in the ocean by mass as there are fish. It's a global environmental problem that poses a serious risk to wildlife, particularly in marine environments.

Now imagine something as simple as a microbe that can degrade those plastic bottles. The good news: these organisms exist. A bacterium, Ideonella sakaiensis 201-F6, was discovered in the soil of a Japanese PET bottle recycling plant more than a year ago. The bad news: it doesn't work fast enough to solve plastic recycling at the industrial scale.

To begin experiments, the research team wanted to find out exactly how effective PETase was at digesting PET. NREL Senior Scientist Bryon Donohoe and postdoctoral researcher Nic Rorrer tested PETase by taking samples of PET from the soda bottles in Beckham's office and ran an experiment with PETase. "After just 96 hours you can see clearly via electron microscopy that the PETase is degrading PET," said Donohoe. "And this test is using real examples of what is found in the oceans and landfills."

But what if the researchers could engineer the enzyme to work a hundred times or a thousand times better?

"We originally set out to determine how this enzyme evolved from breaking down cutin - the waxy substance on the surface of plants - with cutinase, to degrading synthetic PET with PETase," said Beckham. After all, PET, patented as a plastic in the 1940s, has not existed in nature for very long. "We hoped to determine its structure to aid in protein engineering, but we ended up going a step further and accidentally engineered an enzyme with improved performance at breaking down these plastics. What we've learned is that PETase is not yet fully optimized to degrade PET - and now that we've shown this, it's time to apply the tools of protein engineering and evolution to continue to improve it."

NREL and the University of Portsmouth collaborated closely with a multidisciplinary research team at the Diamond Light Source in the UK, a large synchrotron that uses intense beams of X-rays 10 billion times brighter than the sun to act as a microscope powerful enough to see individual atoms. Using their beamline I23, an ultra-high-resolution 3D model of the PETase enzyme was generated in exquisite detail.

With help from the computational modeling scientists at the University of South Florida and the University of Campinas in Brazil, the team discovered that PETase looks very similar to a cutinase, but it has some unusual surface features and a much more open active site. These differences indicated that PETase must have evolved in a PET-containing environment to enable the enzyme to degrade PET. To test that hypothesis, the researchers mutated the PETase active site to make it more like a cutinase.

And this is where the unexpected happened. "Surprisingly, we found that the PETase mutant outperforms the wild-type PETase in degrading PET," said Rorrer. "Understanding how PET binds in the PETase catalytic site using computational tools helped illuminate the reasons for this improved performance. Given these results, it's clear that significant potential remains for improving its activity further."

Another significant aspect of the research: the discovery that PETase can also degrade polyethylene furandicarboxylate, or PEF, a bio-based substitute for PET plastics. The enhanced oxygen barrier properties of PEF could lead to its widespread use in bottles, which could ultimately find their way into the environment, thus adding to the pollution problem. "We were thrilled to learn that PETase works even better on PEF than on PET," said Beckham. "It is literally drilling holes through the PEF sample. This shows that by using PETase, PEF is even more biodegradable than PET."

While the invention of highly durable plastics has had positive impacts for humankind's quality of life, it's that very durability that is causing the plastics pollution problem. The structure of PET is too crystalline to be easily broken down and while PET can be recycled, most of it is not. PET that is recycled often exhibits inferior material properties as well. In addition, PEF plastics, although bio-based, are not biodegradable, and would still end up as waste in landfills and in the seas.

The team's goal is to use their findings to continue to improve the new enzymes to break down these man-made plastics, but in a fraction of the time. "Few could have predicted that in the space of 50 years, single-use plastics such as drink bottles would be found washed up on beaches across the globe," said McGeehan. "We can all play a significant part in dealing with the plastic problem. But the scientific community who ultimately created these 'wonder-materials,' must now use all the technology at their disposal to develop real solutions."


Related Links
National Renewable Energy Laboratory
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Progress toward 'infinitely recyclable' plastic
Tampa (AFP) April 26, 2018
US scientists said Thursday they have made progress toward a kind of plastic that can be recycled "infinitely," and that it appears durable enough to compete with regular plastics. Unlike plastics made from petroleum products, the new kind can be converted back to its original small-molecule state, and remade into new plastics over and over, said the report in the journal Science. "The polymers can be chemically recycled and reused, in principle, infinitely," said lead author Eugene Chen, profes ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
'Jedi' calls on Europe to find innovation force

Simulated Countdown Another Step Toward Exploration Mission-1

Aerospace explores next steps in space development

2020 Decadal Survey Missions: At a Glance

TECH SPACE
Meet the nuclear-powered spaceships of the future

Arianespace to launch BSAT-4b; marking the 10th satellite launch for B-SAT

Vostochny Cosmodrome preps for first tourist visit

US Air Force awards nearly $1 bn for hypersonic missile

TECH SPACE
Opportuity Mars rover looking for a path of less resistance

SwRI's Martian moons model indicates formation following large impact

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

US, Russia likely to go to Mars Together, former NASA astronaut says

TECH SPACE
China unveils underwater astronaut training suit

China's Chang'e-4 relay satellite named "Queqiao"

China outlines roadmap for deep space exploration

Across China: Rocket launch brings back fortune to locals

TECH SPACE
ESA teams ready for space

Aerospace highlights lessons from Public-Private Partnerships in space

Airbus has shipped SES-12 highly innovative satellite to launch base

Storm hunter launched to International Space Station

TECH SPACE
Army researcher uses math to uncover new chemistry

Ames Lab takes the guesswork out of discovering new high-entropy alloys

Rusal shares surge in Hong Kong after US eases sanctions stance

Progress toward 'infinitely recyclable' plastic

TECH SPACE
Molecular evolution: How the building blocks of life may form in space

Giant group of octopus moms discovered in the deep sea

Are we alone? NASA's new planet hunter aims to find out

We think we're the first advanced earthlings - but how do we really know?

TECH SPACE
What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names

Juno Provides Infrared Tour of Jupiter's North Pole









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.