Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















TIME AND SPACE
Deepest X-ray image ever reveals black hole treasure trove
by Staff Writers
University Park PA (SPX) Jan 06, 2017


The image is from the Chandra Deep Field-South. The full field covers an approximately circular region on the sky with an area about two-thirds that of the full moon. However, the outer regions of the image, where the sensitivity to X-ray emission is lower, are not shown here. The colors in this image represent different levels of X-ray energy detected by Chandra. Here the lowest-energy X-rays are red, the medium band is green, and the highest-energy X-rays observed by Chandra are blue. The central region of this image contains the highest concentration of supermassive black holes ever seen, equivalent to about 5,000 objects that would fit into the area of the full moon and about a billion over the entire sky. Image courtesy X-ray: NASA/CXC/Penn State/B. Luo et al. For a larger version of this image please go here.

An unparalleled image from NASA's Chandra X-ray Observatory is giving an international team of astronomers the best look yet at the growth of black holes over billions of years beginning soon after the Big Bang. This is the deepest X-ray image ever obtained, collected with about 7 million seconds, or 11 and a half weeks, of Chandra observing time.

The image comes from what is known as the Chandra Deep Field-South. The central region of the image contains the highest concentration of supermassive black holes ever seen, equivalent to about 5,000 objects that would fit into the area of the full Moon and about a billion over the entire sky.

"With this one amazing picture, we can explore the earliest days of black holes in the Universe and see how they change over billions of years," said Niel Brandt, the Verne M. Willaman Professor of Astronomy and Astrophysics, and professor of physics, Penn State, who led a team of astronomers studying the deep image.

About 70 percent of the objects in the new image are supermassive black holes, which may range in mass from about 100,000 to 10 billion times the mass of the Sun. Gas falling towards these black holes becomes much hotter as it approaches the event horizon, or point of no return, producing bright X-ray emission.

"It can be very difficult to detect black holes in the early Universe because they are so far away and they only produce radiation if they're actively pulling in matter," said team member Bin Luo, professor of astronomy and space science, Nanjing University. "But by staring long enough with Chandra, we can find and study large numbers of growing black holes, some of which appear not long after the Big Bang."

The new ultra-deep X-ray image allows scientists to explore ideas about how supermassive black holes grew about one to two billion years after the Big Bang. Using these data, the researchers showed that these black holes in the early Universe grow mostly in bursts, rather than via the slow accumulation of matter.

The researchers also have found hints that the seeds for supermassive black holes may be "heavy" with masses about 10,000 to 100,000 times that of the Sun, rather than light seeds with about 100 times the Sun's mass. This addresses an important mystery in astrophysics about how these objects can grow so quickly to reach masses of about a billion times the Sun in the early Universe.

They also have detected X-rays from massive galaxies at distances up to about 12.5 billion light years from Earth. Most of the X-ray emission from the most distant galaxies likely comes from large collections of stellar-mass black holes within the galaxies. These black holes are formed from the collapse of massive stars and typically weigh a few to a few dozen times the mass of the Sun.

"By detecting X-rays from such distant galaxies, we're learning more about the formation and evolution of stellar-mass and supermassive black holes in the early Universe," said team member Fabio Vito, postdoctoral scholar in astronomy and astrophysics, Penn State. "We're looking back to times when black holes were in crucial phases of growth, similar to hungry infants and adolescents."

To perform this study, the team combined the Chandra X-ray data with very deep Hubble Space Telescope data over the same patch of sky. They studied X-ray emission from over 2,000 galaxies identified by Hubble that are located between about 12 and 13 billion light years from Earth.

Further work using Chandra and future X-ray observatories will be needed to provide a definite solution to the mystery of how supermassive black holes can quickly reach large masses. A larger sample of distant galaxies will come from observations with the James Webb Space Telescope, extending the study of X-ray emission from black holes out to even greater distances from Earth.

The researchers presented their results this week (Jan. 5) at the 229th meeting of the American Astronomical Society meeting in Grapevine, Texas. A paper on black hole growth in the early Universe, led by Fabio Vito, was published in the Aug. 10, 2016, issue of the Monthly Notices of the Royal Astronomical Society. A survey paper led by Bin Luo was recently accepted for publication in The Astrophysical Journal Supplement Series.

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.

Penn State and MIT, under the leadership of Gordon Garmire, Evan Pugh Professor Emeritus of Astronomy, Penn State, developed the ACIS instrument for NASA.


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Penn State
Understanding Time and Space






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
NASA selects mission to study black holes, cosmic x-ray mysteries
Washington DC (SPX) Jan 04, 2017
NASA has selected a science mission that will allow astronomers to explore, for the first time, the hidden details of some of the most extreme and exotic astronomical objects, such as stellar and supermassive black holes, neutron stars and pulsars. Objects such as black holes can heat surrounding gases to more than a million degrees. The high-energy X-ray radiation from this gas can be pol ... read more


TIME AND SPACE
Tech outlook dampened by political uncertainty

NASA Assigns Upcoming Space Station Crew Members

Space station battery replacements to begin New Year's Eve

Launch of Russia's new progress spacecraft set for February 2

TIME AND SPACE
SpaceX ready to launch again

Europe and Russia looking at Space Tug Project

India to develop large scale solid fuel mixer

Mission contracts secure Commercial Crew operations for coming years

TIME AND SPACE
Hues in a Crater Slope

Odyssey recovering from precautionary pause in activity

3-D images reveal features of Martian polar ice caps

Small Troughs Growing on Mars May Become 'Spiders'

TIME AND SPACE
China Plans to Launch 1st Mars Probe by 2020 - State Council Information Office

China to expand int'l cooperation on space sciences

China sees rapid development of space science and technology

China Space Plan to Develop "Strength and Size"

TIME AND SPACE
Airbus DS and Energia eye new medium-class satellite platform

OneWeb announces key funding form SoftBank Group and other investors

Space as a Driver for Socio-Economic Sustainable Development

SoftBank delivers first $1 bn of Trump pledge, to space firm

TIME AND SPACE
Russian static discharge measure unit to prolong satellite equipment lifespan

How to 3-D print your own sonic tractor beam

Saab, UAE sign radar support deal

Elbit contracted for airborne laser designator work

TIME AND SPACE
The blob can learn and teach

Searching a sea of 'noise' to find exoplanets - using only data as a guide

Microlensing Study Suggests Most Common Outer Planets Likely Neptune-mass

Exciting new creatures discovered on ocean floor

TIME AND SPACE
York U research identifies icy ridges on Pluto

Exploring Pluto and the Wild Back Yonder

Juno Captures Jupiter 'Pearl'

Juno Mission Prepares for December 11 Jupiter Flyby




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement