. 24/7 Space News .
STELLAR CHEMISTRY
Dark matter search enters new chapter
by Staff Writers
Hamburg, Germany (SPX) Oct 29, 2019

At DESY, ALPS II might be just the first experiment within a new strategic approach to tackle dark matter. "International collaborations are preparing the IAXO experiment to search for axions emitted by the Sun as well as the MADMAX detector, which will look directly for axions as constituents of the local dark matter surrounding us", explained Joachim Mnich, DESY's director for particle physics.

The international ALPS II ("Any light particle search") collaboration installed the first of 24 superconducting magnets today, marking the start of the installation of a unique particle physics experiment to look for dark matter. Located at the German research centre DESY in Hamburg, it is set to start taking data in 2021 by looking for dark matter particles that literally make light shine through a wall, thus providing clues to one of the biggest questions in physics today: what is the nature of dark matter?

"It is very exciting to see the project that many of us have been working on for so many years finally taking shape in the tunnel," ALPS-II spokesman Axel Linder from DESY said. "When installation and commissioning proceed as planned we will be able to start the search in the first half of 2021."

Dark matter is one of the greatest mysteries in physics. Observations and calculations of the motion of stars in galaxies, for example, show that there must be more matter in the universe than we can account for with matter particles known today. In fact, dark matter must make up 85% of all the matter in the universe. However, currently we don't know what it is. But we know that it does not interact with regular matter and is essentially invisible, so that it is called "dark."

There are several theories that try to explain the nature of dark matter and the particles it may consist of. One of these theories states that dark matter consists of very lightweight particles with very specific properties. One example is the axion which was originally postulated to explain aspects of the strong interaction, one of the fundamental forces of nature. There are also puzzling astrophysical observations such as discrepancies in the evolution of stellar systems, which might also be explained by the existence of axions or axion-like particles.

This is where ALPS II comes in. It is designed to create and detect those axions. A strong magnetic field can make axions switch to photons and vice versa. "This bizarre property was already exploited in the initial ALPS I experiment which we ran from 2007 to 2010. Despite its limited size, it achieved the worldwide best sensitivities for these kinds of experiments," said Benno Willke, the leader of the ALPS and of the laser development group at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute) and at the Institute for Gravitational Physics at Leibniz Universitat of Hannover.

ALPS II is being set up in a straight tunnel section of DESY's former particle physics accelerator HERA. Twenty-four superconducting accelerator magnets, 12 on either side of a wall, house two 120-metre-long optical cavities. A powerful and intricate laser system produces light that is amplified by the cavity inside the magnetic field and will, to a very small fraction, convert into dark matter particles. A light-blocking barrier - a wall - separates the second compartment of ALPS II, but this wall is no hurdle for axions and similar particles that can easily pass through it. In the second cavity dark matter particles would convert back into light. The tiny signal will be picked up by dedicated detection systems.

The more than 1,000-fold improvement in sensitivity of ALPS II is made possible by the increased length of the magnet strings but also by significant advances in optical technologies. "These advances emerged from the work on gravitational wave interferometers such as GEO600 and LIGO, and nicely show how technological advances in one area enable progress in others," said Co-Spokesperson Guido Mueller from the University of Florida in Gainesville.

ALPS II is also an example of recycling in research: it does not only reuse a stretch of tunnel that once housed DESY's flagship particle accelerator, but it also reuses the very magnets that drove protons around the ring until 2007. These magnets needed to be reengineered to fit the ALPS purposes: the slight bend needed in an accelerator ring had to be removed to allow photons to propagate through them.

The ALPS II collaboration consists of some 25 scientists from these institutes: DESY, the Max Planck Institute for Gravitational Physics (Albert Einstein Institute) and the Institute for Gravitational Physics at Leibniz Universitat of Hannover, the Johannes Gutenberg-Universitat Mainz, the University of Florida in Gainesville, and Cardiff University. Beyond that, the collaboration is supported by partners worldwide like the National Metrology Institute (PTB) in Germany and the National Institute of Standards and Technology in the USA. The experiment is mainly funded by DESY, the Heising-Simons Foundation, the US National Science Foundation, the German Volkswagen Stiftung and German Research Foundation (DFG).

At DESY, ALPS II might be just the first experiment within a new strategic approach to tackle dark matter. "International collaborations are preparing the IAXO experiment to search for axions emitted by the Sun as well as the MADMAX detector, which will look directly for axions as constituents of the local dark matter surrounding us," explained Joachim Mnich, DESY's director for particle physics.


Related Links
Interactions Collaboration | Particle-Physics Laboratories
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Placing another piece in the dark matter puzzle
Mainz, Germany (SPX) Oct 28, 2019
A team led by Prof Dmitry Budker has continued their search for dark matter within the framework of the "Cosmic Axion Spin Precession Experiment" (or "CASPEr" for short). The CASPEr group conducts their experiments at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU) and the Helmholtz Institute Mainz (HIM). CASPEr is an international research program that uses nuclear magnetic resonance techniques to identify and analyze dark matter. Very little is known about the exac ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
ESA and Airbus to cooperate on the Bartolomeo platform

Roscosmos agrees to reschedule Progress launch following request from NASA

Iran to discuss possibility of sending its astronaut to ISS with Russia

US vows closer cooperation with French space agency

STELLAR CHEMISTRY
Air-breathing engine precooler achieves record-breaking Mach 5 performance

DLR and Swedish Space Corporation combine expertise for engine tests

DLR and FAA working to integrate commercial spaceflight into the air transport system

DARPA updates competitor field for flexible, responsive launch to orbit

STELLAR CHEMISTRY
Mars 2020 stands on its own six wheels

New selfie shows Curiosity, the Mars chemist

Naming a NASA Mars rover can change your life

Martian landslides not conclusive evidence of ice

STELLAR CHEMISTRY
China's absence from global space conference due to "visa problem" causes concern

China prepares for space station construction

China's rocket-carrying ships depart for transportation mission

China's KZ-1A rocket launches two satellites

STELLAR CHEMISTRY
European network of operations centres takes shape

Space: a major legal void

SpaceX to launch 42,000 satellites

Launch of the European AGILE 4.0 research project

STELLAR CHEMISTRY
New procedure for obtaining a cheap ultra-hard material that is resistant to radioactivity

Las Cumbres helping to develope a Cyberinfrastructure Institute for Astronomical Data

It takes a two-atom catalyst to make oxygen from water

What About Space Traffic Management?

STELLAR CHEMISTRY
With NASA telescope on board, search for intelligent aliens 'more credible'

Building blocks of all life gain new understanding

Cascades of gas around young star indicate early stages of planet formation

Breakthrough Listen to collaborate with scientists from NASA's TESS Team

STELLAR CHEMISTRY
NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.