. 24/7 Space News .
STELLAR CHEMISTRY
DDO 68: Among Galaxies, A Flea, But A Voracious One
by Staff Writers
Tucson AZ (SPX) Aug 12, 2016


This visible-light image taken with the Large Binocular Telescope shows dwarf galaxy DDO 68, which lies in a comparatively "empty" region of space 39 million light-years from Earth, and one of its companion objects, DDO 68 C. The scale bar indicates a distance of 3.6 kiloparsecs, or just under 12,000 light-years. Image courtesy Francesca Annibali/INAF. For a larger version of this image please go here.

Even a dwarf galaxy with very low mass is capable of accreting smaller nearby galaxies, according to an international team of astronomers led by Francesca Annibali of INAF, the Italian National Institute for Astrophysics. This result has been achieved thanks to observations of the region surrounding the dwarf galaxy DDO 68, which has a total stellar mass of only 100 million solar masses, roughly one thousandth of our Milky Way.

Within the scenario of hierarchical galaxy formation, theoretical models predict that galaxies form by successive mergers of smaller systems at all scales. However, until now, direct observational evidence confirming these predictions was available only for massive galaxies and their smaller companions.

In the new study, Annibali and collaborators took advantage of the sensitivity and the large field of view of the Large Binocular Telescope, or LBT, located on Mt. Graham in southeastern Arizona (U.S.). The team discovered that DDO 68, a dwarf galaxy located in an isolated region of space defined as a "void," is actually surrounded by a number of smaller satellite galaxies, and is accreting them.

"In a way, what we saw reminded us of a quote by Jonathan Swift," Annibali said. "'So, naturalists observe, a flea has smaller fleas that on him prey; and these have smaller still to bite 'em; and so proceed ad infinitum.' It turns out that even the smallest of galaxies feed on companions that are even smaller, and so our paper bears that quote in its title."

DDO 68 is one of three known least evolved galaxies among those that still form stars, with a chemical composition not much different from that resulting from the Big Bang. Scientists had already thought that its extremely irregular morphology - with a long tail hosting both stars and gas - could be due to tidal effects resulting from gravitational interactions with other bodies. Incidentally, a candidate companion - possibly another small galaxy or a gas cloud - was spotted at a relatively large distance two years ago by a team led by John Cannon of Macalester College in Minnesota.

"When we analyzed our Hubble Space Telescope images, we detected an anomalous protuberance off DDO 68's main body," said Francesca Annibali, a postdoctoral fellow/researcher at the INAF - Astronomical Observatory in Bologna, Italy.

"We thought that only LBT with its two 8.4 meter primary mirrors could have the power and the field of view necessary to prove, or disprove, the presence of a stream and other accreting satellites."

LBT's wide and deep images revealed that DDO 68 not only has its well known long tail, but also another small, incoming stream and a few other star and gas companions that most likely are satellites whose ultimate fate is to be accreted.

The stream and satellites probably have masses - about 100,000 solar masses - similar to, or even lower than, those of the ultra-faint Milky Way satellites, the least luminous and smallest galaxies known so far, believed to be the closest local analogs of the first galaxies.

"Our colleagues, Luca Ciotti and Carlo Nipoti of the Physics and Astronomy Department at the Bologna University, have computed numerical dynamical models of DDO 68's system that reproduce very well the observed configuration of the 'flea with its smaller fleas,'" Annibali pointed out.

"This is the first evidence of a stellar stream around an isolated dwarf galaxy of only a hundred million solar masses, and the observational proof that hierarchical galaxy formation processes work also at the smallest scales."

"In other words, not only massive bodies are able to cannibalize the smaller ones that happen to lie in their surroundings, but the same appetite and digestion capabilities can be found in the smaller ones," added Monica Tosi, INAF astronomer and member of Annibali's team.

Dwarf galaxies with active star formation are important in helping scientists understand the formation and evolution of galaxies in general.

Of those, galaxies that are extremely poor in metals, such as DDO 68, are even more interesting, because in spite of having formed stars for many billions of years, they haven't been able to retain the chemical elements produced by nuclear fusion inside stars. Most likely they have lost their metals via ejection into the surrounding medium through galactic winds triggered by supernova explosions.

"It is very interesting to discover that a system whose gravitational potential is too low to retain ejecta from supernovae is still capable of attracting and accreting smaller galaxies," Tosi said. "Specific dynamical and hydrodynamical studies are necessary to understand what main mechanisms are at play here."

"The results achieved with DDO 68 show the high discovery power of wide-field instrumentation mounted on 8- to 10-meter class telescopes for future projects devoted to the search of substructures around isolated dwarf galaxies," she added. "It also emphasizes the importance of combining deep observations with theoretical studies on the evolution and the dynamics of both stars and gas in the galaxies we study."

"DDO 68: A Flea with Smaller Fleas that on Him Prey," F. Annibali et al., 2016 Aug. 1, Astrophysical Journal Letters, Vol. 826, No. 2


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Large Binocular Telescope Corporation
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Mapping the exotic matter inside neutron stars
Helsinki, Finland (SPX) Aug 04, 2016
The recent detection of gravitational waves emitted by two merging black holes by the LIGO and Virgo collaborations has opened up a new observational window into the cosmos. Future observations of similar mergers between two neutron stars or a neutron star and a black hole may revolutionize what we know today about the properties of neutron stars, the densest stellar objects in the univers ... read more


STELLAR CHEMISTRY
Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

As dry as the moon

US company gets historic nod to send lander to moon

China's Jade Rabbit lunar rover dies in blaze of online glory

STELLAR CHEMISTRY
Opportunity going back for closer look at grooves seen in images

Limited power as Mar Lab approaches Murray Buttes

Mineral Veins on Mars Were Formed by Evaporating Ancient Lakes

Evidence of Martian life could be hard to find in some meteorite blast sites

STELLAR CHEMISTRY
Commercial Crew Astronauts Discuss Progress, Training with Employees

Autonomous interplanetary travel one step closer to reality

After Deadly Crash, Virgin Galactic to Fly Its Spaceplane Once More

Tile Bonding Begins for Orion's First Mission Atop Space Launch System Rocket

STELLAR CHEMISTRY
China launches hi-res SAR imaging satellite

China launches world first quantum satellite

China launches first mobile telecom satellite

China prepares for new round of manned space missions

STELLAR CHEMISTRY
NanoRacks External Platform Deployed Outside International Space Station

Russia Could Cut Down International Space Station Crew

NASA mulls Russian idea to cut staff at space station

JSC pursues collection of new technologies for ISS

STELLAR CHEMISTRY
Launch of US Antares Rocket Powered by Russian Engine Postponed

Preparations for Arianespace's upcoming Ariane 5 flight move into their final phase at the Spaceport

Seoul Confirms Russian Carrier Rocket to Put Korean Satellite Into Orbit in 2020

New payload preparation milestones bring Ariane 5's upcoming mission closer to liftoff

STELLAR CHEMISTRY
Scientists to unveil new Earth-like planet: report

Astronomers catalogs most likely 'second-Earth' candidates

Alien Solar System Boasts Tightly Spaced Planets, Unusual Orbits

NASA's Next Planet Hunter Will Look Closer to Home

STELLAR CHEMISTRY
Sierra Nevada Corporation helps Juno "Keep Cool and Science On"

Stanford scientists consider 3D printing Mars rock samples

New method helps stabilize materials with elusive magnetism

Self-cleaning, anti-reflective, microorganism-resistant coatings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.