Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Chemical treatment improves quantum dot lasers
by Staff Writers
Los Alamos NM (SPX) Oct 18, 2017


Los Alamos National Laboratory Chemist Jaehoon Lim works on an apparatus that synthesizes quantum dots along with Los Alamos researcher Young-Shin Park (also with the University of New Mexico Center for High-Technology Materials). In a paper published in Nature Nanotechnology, Los Alamos colleagues Kaifeng Wu and Victor Klimov worked with Lim and Park to demonstrate that negatively charged quantum dots show promise for low-power laser applications or quantum dot laser diodes.

One of the secrets to making tiny laser devices such as opthalmic surgery scalpels work even more efficiently is the use of tiny semiconductor particles, called quantum dots. In new research at Los Alamos National Laboratory's Nanotech Team, the ~nanometer-sized dots are being doctored, or "doped," with additional electrons, a treatment that nudges the dots ever closer to producing the desired laser light with less stimulation and energy loss.

"When we properly tailor the compositional profile within the particles during their fabrication, and then inject two or more electrons in each dot, they become more able to emit laser light. Importantly, they require considerably less power to initiate the lasing action," said Victor Klimov, leader of the Nanotech team.

In order to force a material to emit laser light one has to work toward a "population inversion," that is, making the number of electrons in a higher-energy electronic state exceed the number that are in a lower-energy state. To achieve this condition normally, one applies an external stimulus (optical or electrical) of a certain power, which should exceed a critical value termed the "optical-gain threshold."

In a recent paradigm-changing advance, Los Alamos researchers demonstrated that by adding extra electrons into their specially designed quantum dots, they can reduce this threshold to virtually zero.

A standard lasing material, when stimulated by a pump, absorbs light for a time before it starts to lase. On the way to lasing, the material transitions through the state of "optical transparency" when light is neither absorbed nor amplified. By adding extra charge carriers to their quantum dots, the Los Alamos researchers were able to block absorption and create the state of transparency without external stimulation. This implies that even extremely weak pumping can now initiate lasing emission.

Another important ingredient of this research is a new type of quantum dots with their interiors designed to maintain the lasing-active state for much longer than standard particles do. Normally, the presence of extra electrons would suppress lasing because quantum dot energy is quickly released not as a photon stream but wasteful heat. The new Los Alamos particle design eliminates these parasitic losses, redirecting the particle's energy into the emission channel.

"These studies open exciting opportunities for realizing new types of low-threshold lasing devices that can be fabricated from solution using a variety of substrates and optical cavity designs for applications ranging from fiber optics and large-scale lasing arrays to laser lighting and lab-on-a-chip sensing technologies," Klimov said.

Kaifeng Wu, Young-Shin Park, Jaehoon Lim, and Victor I. Klimov, "Towards zero-threshold optical gain using charged semiconductor quantum dots," Nature Nanotechnology.

TECH SPACE
Microlasers get a performance boost from a bit of gold
Washington (UPI) Oct 5, 2017
Scientists have boosted the efficiency of microlasers using tiny gold particles, thus expanding the technology's real-world application possibilities. Researchers at the University of Southern California were able to create a tiny, energy-efficient frequency comb by attaching gold nanoparticles to the surface of a tiny laser. Frequency combs create a rainbow of light frequencies ... read more

Related Links
Los Alamos National Laboratory
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Roscosmos: International Space Exploration to Continue Despite Geopolitical Situation

US spacewalkers install 'new eyes' at space station

NASA May Extend BEAM's Time on the International Space Station

USNO Astronomers Measure New Distances To Nearby Stars

TECH SPACE
Russia May Adjust Space Program to Construct Super-Heavy Carrier Rocket

DARPA Awards Aerojet Rocketdyne Contract to Develop Hypersonic Advanced Full Range Engine

SpaceX launches, lands recycled rocket

Angola's First Satellite to Be Launched From Baikonur Spaceport Dec. 7

TECH SPACE
Russian Space Research Institute Announces July 2020 Date for Mission to Mars

ASU examines Mars' moon Phobos in a different light

Mars Study Yields Clues to Possible Cradle of Life

Another Chance to Put Your Name on Mars

TECH SPACE
China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

UN official commends China's role in space cooperation

China's cargo spacecraft separates from Tiangong-2 space lab

TECH SPACE
Turkey, Russia to Enhance Cooperation in the Field of Space Technologies

SpaceX launches 10 satellites for Iridium mobile network

Lockheed Martin Completes First Flexible Solar Array for LM 2100 Satellite

GomSpace and Luxembourg to develop space activities in the Grand Duchy

TECH SPACE
Understanding rare earth emulsions

Missing link between new topological phases of matter discovered

Space radiation won't stop NASA's human exploration

Saab upgrading Norwegian radars under NATO contract

TECH SPACE
Are Self-Replicating Starships Practical

New telescope attachment allows ground-based observations of new worlds

Biomarker Found In Space Complicates Search For Life On Exoplanets

The Super-Earth that Came Home for Dinner

TECH SPACE
Ring around a dwarf planet detected

Helicopter test for Jupiter icy moons radar

Solving the Mystery of Pluto's Giant Blades of Ice

Global Aerospace Corporation to present Pluto lander concept to NASA




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement