. | . |
Missing link between new topological phases of matter discovered by Staff Writers Berlin, Germany (SPX) Oct 18, 2017
This could also lead to new applications such as switching between differing conductivities. The HZB researchers studied crystalline semiconductor films made of a lead, tin, and selenium alloy (PbSnSe) that were doped additionally with tiny amounts of the element bismuth. These semiconductors belong to the new class of materials called topological insulators, materials that conduct very well at their surfaces while behaving as insulators internally. Doping with 1-2 per cent bismuth has enabled them to observe a new topological phase transition now. The sample changes to a particular topological phase that also possesses the property of ferroelectricity. This means that an external electric field distorts the crystal lattice, whereas conversely, mechanical forces on the lattice can create electric fields. The effect can be used to develop new functionality, which is also of interest for potential applications. Ferroelectric phase-change materials are employed in DVDs and flash memories, for example. An electrical voltage displaces atoms in the crystal, transforming the insulating material into a metallic one. The bismuth doping in the PbSnSe films investigated at HZB served as a perturbation. The number of electrons in bismuth does not fit well in the periodic arrangement of atoms within the PbSnSe crystal. "Tiny changes in the atomic structure give rise to fascinating effects in this class of materials", explains HZB researcher Dr. Jaime Sanchez-Barriga, principal investigator coordinating the project. Following detailed analyses of the measurements, only one conclusion remained: the bismuth doping causes a ferroelectric distortion in the lattice that also changes the allowable energy levels of the electrons. "This problem kept us puzzled during several beamtimes until we reproduced the scientific results on a whole new set of samples", adds Sanchez-Barriga. "Potential applications could arise through ferroelectric phases - ones that have not been thought of before. Lossless conduction of electricity in topological materials can be switched on and off at will, by electrical pulses or by mechanical strain", explains Prof. Oliver Rader, head the department Materials for Green Spintronics at HZB.
Research Report: Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator
Chicago IL (SPX) Oct 16, 2017 Despite their name, rare earth elements actually aren't that rare. Abundant in mines around the world, rare earths are used in many high-tech products, including visual displays, batteries, super conductors, and computer hard drives. But while they aren't necessarily tricky to find, the elements often occur together and are extremely difficult to separate and extract. "Having the ability t ... read more Related Links Helmholtz-Zentrum Berlin fur Materialien und Energie Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |