. | . |
Biomarker Found In Space Complicates Search For Life On Exoplanets by Staff Writers Paris (ESA) Oct 06, 2017
A molecule once thought to be a useful marker for life as we know it has been discovered around a young star and at a comet for the first time, suggesting these ingredients are inherited during the planet-forming phase. The discovery of methyl chloride was made by the ground-based Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, and by ESA's Rosetta spacecraft following Comet 67P/Churyumov-Gerasimenko. It is the simplest member of a class of molecules known as organohalogens, which contain halogens, such as chlorine or fluorine, bonded with carbon. Methyl chloride is well known on Earth as being used in industry. It is also produced naturally by biological and geological activity: it is the most abundant organohalogen in Earth's atmosphere, with up to three megatonnes produced a year, primarily from biological processes. As such, it had been identified as a possible 'biomarker' in the search for life at exoplanets. This has been called into question, however, now it is seen in environments not derived from living organisms, and instead as a raw ingredient from which planets could eventually form. This is also the first time an organohalogen has been detected in space, indicating that halogen- and carbon-centred chemistries are more intertwined than previously thought. The ALMA observations were made towards the young star IRAS 16293-2422, a low-mass binary system in the Rho Ophiuchi star-forming region about 400 light-years from Earth. The system was already known to have a wealth of organic molecules distributed around it, but ALMA now makes it possible to zoom in to scales equivalent to the outer planets in our own Solar System, making it an ideal target for comparative studies with comets. Because comets are believed to preserve the chemical composition of the Sun's birth cloud, and in order to better understand the formation pathways of organic molecules, the detection of the molecule in the young star system triggered a search in the extensive data collected by ESA's Rosetta spacecraft during its 2014-16 mission at Comet 67P/Churyumov-Gerasimenko. "We found it but it is very elusive, one of the 'chameleons' of our molecule zoo, only present during short times when we observed a lot of chlorine," says Kathrin Altwegg, principal investigator of the ROSINA instrument that made the comet detection. The measurements were made in May 2015, when the comet was approaching its closest point to the Sun along its elliptical orbit, near to the orbit of Mars, and was very active, releasing a lot of gas and dust as the Sun warmed its icy surface. The methyl chloride was identified in the measurements when the hydrogen chloride signal was at its highest. Moreover, the methyl chloride was found in comparable abundances in both the young star system and the comet. Rocky planets like Earth could directly inherit these ingredients during the planet-building phase, but comets could also act as a vessel to deliver them through the high rate of impacts occurring in the early years of a forming solar system. "The dual detection of an organohalogen in a star-forming region and at a comet indicates that these chemicals will likely be part of the 'primordial soup' on the young Earth and newly formed rocky exoplanets," says Edith Fayolle, lead author of the study published in Nature Astronomy. "Understanding this initial chemistry on planets is an important step toward the origins of life." It is also a crucial aspect for the search for life outside our Solar System, but the apparent prevalence of organohalogens in space calls into question their use as a biomarker when interpreting possible future detections of the molecule in the atmospheres of rocky exoplanets. "The combined study takes detections of key biological molecules to a new level, with the exciting possibility that they predate the formation of our Solar System as we know it today," comments Matt Taylor, ESA's Rosetta Project Scientist. "The complementary results provide an important context for our Rosetta data and for the wider implications of Solar System formation, and especially how we might interpret observations of extrasolar systems." The ALMA data were part of the Protostellar Interferometric Line Survey (PILS). The aim of the survey is to chart the chemical complexity of IRAS 16293-2422 by imaging the full wavelength range covered by ALMA on very small scales, equivalent to the size of our Solar System.
Research Report: "Protostellar and cometary detections of organohalogens," by E. Fayolle et al. is published in Nature Astronomy, 2 October 2017.
York UK (SPX) Sep 15, 2017 Researchers at the University of York have shown that molecules brought to earth in meteorite strikes could potentially be converted into the building blocks of DNA. They found that organic compounds, called amino nitriles, the molecular precursors to amino acids, were able to use molecules present in interstellar ice to trigger the formation of the backbone molecule, 2-deoxy-D-ribose, of ... read more Related Links Rosetta at ESA Lands Beyond Beyond - extra solar planets - news and science Life Beyond Earth
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |