. 24/7 Space News .
CARBON WORLDS
Carbon goes with the flow
by Staff Writers
East Lansing MI (SPX) Nov 14, 2018

file illustration

Many people see the carbon cycle as vertical - CO2 moving up and down between soil, plants and the atmosphere.

However, new Michigan State University research published in the current issue of Geophysical Research Letters, adds a dimension to the vertical perspective by showing how water moves massive amounts of carbon laterally through ecosystems - especially during floods. These findings - which analyzed more than 1,000 watersheds, covering about 75 percent of the contiguous U.S. - have implications for climate change and water quality.

Carbon in the environment, specifically dissolved organic carbon or DOC, is a master variable that influences many of our planet's fundamental processes, such as water chemistry, greenhouse gas emissions and pollutant transport across land and water, said Jay Zarnetske, MSU earth and environmental scientist and the study's lead author.

"When water flows through ecosystems, it picks up organic carbon from plants and soils, and in many cases, water determines whether the ecosystem is a net carbon source or sink," he said. "The massive amount of carbon that leaks out of ecosystems as DOC is about as big as the net amount of carbon taken up from the atmosphere each year. So accurate accounting is crucial when managing the 'carbon bank account.'"

DOC in rivers is like making tea, Zarnetske added. "You start with relatively clear water falling as precipitation, and then the organic carbon in the landscape gets leached into the water," he said. "This tea then gets flushed to streams during floods, often turning the water brown."

Zarnetske's new work suggests a better way to account for the carbon leaving ecosystems as DOC by including data from flood events. Citing logistical and safety concerns, scientists typically give rivers wide berth during floods.

As a result, researchers know less about DOC behavior during floods. When water is flowing fast and brown, though, is when the most carbon is being transported out of most watersheds. In other words, this is a time when more sampling is needed.

What surprised the team of scientists is that floods readily flush carbon from landscapes in diverse ecosystems across North America, spanning from Michigan forests to the Sonoran Desert.

They initially thought the DOC would be diluted by floods in many parts of the U.S. Floods, however, lead to the release of large amounts of DOC - or stronger tea, metaphorically speaking - from almost all environments in a relatively short time.

"We knew that DOC went up during floods in some areas, but we were surprised to see the same pattern in the vast majority of watersheds all across the country," Zarnetske said. "Deserts don't have as much DOC as deciduous forests, but when you have an event like a flash flood, the process is the same, and the torrents of water are chock full of carbon."

Another important confirmation from the study's massive data set was the significant role wetlands play in our watersheds. The DOC flushing behavior across the U.S. was primarily related to the acreage of wetlands in a watershed. Wetlands act as buffers or storage zones for DOC in watersheds. If floodwaters rise, water and DOC in the wetlands closest to the river can rapidly spill over.

Consequently, where natural wetlands are located within the watershed is important. Draining natural wetlands and "trading them" for another nearby swamp or building an artificial wetland might look good on paper, but it's going to affect an area's ability to store and release carbon, Zarnetske added.

"Wetlands are major controls for carbon balance and water quality, and they're also some of the most vulnerable landscapes," he said. "If you move them, you're changing a region's plumbing and the chemistry."

For this research, the scientists used data from across the U.S., but they didn't wade in a single stream or swamp. Their results came from scads of data collected over decades by state and federal government agencies, primarily the U.S.

Geological Survey. The dataset's sheer size can be intimidating, and mastering the skills needed to tease out its secrets is daunting. However, it is a true treasure trove of information. While collecting this long-term data may not seem as exciting as conducting new experiments, the historic data are valuable and their value only grows with time, Zarnetske said.

"It's not flashy, but it's powerful data," he said. "These data were being collected long before we knew of computers and methods powerful enough to analyze it all. It's another example of how long-term data collections are key to discoveries and worthy of continued funding."

And such massive datasets play into MSU's strengths, he added.

"Among MSU's strong suits are data-intensive research, macrosystems ecology and interdisciplinary research," Zarnetske said. "Our team leveraged this publicly available dataset in a novel way to refine many longstanding theories enabling better management of carbon balances, wetlands and other water-quality issues."

Research paper


Related Links
Michigan State University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Graphene on the way to superconductivity
Berlin, Germany (SPX) Nov 12, 2018
Carbon atoms have diverse possibilities to form bonds. Pure carbon can therefore occur in many forms, as diamond, graphite, as nanotubes, football molecules or as a honeycomb-net with hexagonal meshes, graphene. This exotic, strictly two-dimensional material conducts electricity excellently, but is not a superconductor. But perhaps this can be changed. In April 2018, a group at MIT, USA, showed that it is possible to generate a form of superconductivity in a system of two layers of graphene under ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
'Dust up' on International Space Station hints at sources of structure

Russia's Roscosmos confirms computer glitch on board ISS

Experience high-res science in first 8K footage from space

Roscosmos, NASA to adjust ISS program to fit with lunar missions

CARBON WORLDS
Russia plans to carry out 17 space launches in 2018

Simulating hypersonic flow transitions from smooth to turbulent

Fregat Upper Stage Separates From Soyuz Carrier Bringing Satellite to Orbit

Hole in Soyuz MS-09 hull could have been drilled before launch

CARBON WORLDS
The Mars InSight Landing Site Is Just Plain Perfect

Evidence of outburst flooding indicates plentiful water on early Mars

Curiosity on the move again

Water cycle along the northern rim of Hellas Basin throughout Mars' history

CARBON WORLDS
China unveils new 'Heavenly Palace' space station as ISS days numbered

China's space programs open up to world

China's commercial aerospace companies flourishing

China launches Centispace-1-s1 satellite

CARBON WORLDS
Telstar 18 VANTAGE satellite now operational over Asia Pacific

How Max Polyakov from Zaporozhie develops the Ukrainian space industry

SpaceFund launches the world's first space security token to fund the opening of the high frontier

ESA on the way to Space19+ and beyond

CARBON WORLDS
Flying focus: Controlling lasers through time and space

A two-atom quantum duet

Flow units: Dynamic defects in metallic glasses

Creating better devices: The etch stops here

CARBON WORLDS
Laser tech could be fashioned into Earth's 'porch light' to attract alien astronomers

Laboratory experiments probe the formation of stars and planets

NASA retires Kepler Space Telescope, passes planet-hunting torch

Rocky and habitable - sizing up a galaxy of planets

CARBON WORLDS
SwRI team makes breakthroughs studying Pluto orbiter mission

ALMA maps temperature of Jupiter's icy moon Europa

NASA's Juno Mission Detects Jupiter Wave Trains

WorldWide Telescope looks ahead to New Horizons' Ultima Thule glyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.