. | . |
Flying focus: Controlling lasers through time and space by Staff Writers Portland OR (SPX) Nov 06, 2018
Scientists have produced an extremely bright spot of light that can travel at any speed - including faster than the speed of light. Researchers have found a way to use this concept, called "flying focus," to move an intense laser focal point over long distances at any speed. Their technique includes capturing some of the fastest movies ever recorded. A "flying focus" combines a lens that focuses specific colors of light at different locations with the recent Nobel Prize winning chirped-pulse amplification technology, which organizes the colors of light in time. Imagine a laser producing a continuously changing rainbow of colors that start with blue and end with red. Now focus the light with a lens that concentrates the red light close to the lens and blue light much farther from the lens. Because of the time delay between the colors, the high-intensity focal point moves. By changing the time delay separating the different colors, this spot can be made to move at any speed. "The flying focus turns out to be super powerful," said Dustin Froula, the Plasma Physics Group Leader at the University of Rochester's Laboratory for Laser Energetics. "It allows us to generate high intensities over hundreds of times the distance than we could before and at any speed. We're now trying to make the next generation of high-powered lasers and flying focus could be that enabling technology." His team, supported by the Department of Energy Office of Fusion Energy Sciences, will be presenting this research at the upcoming American Physical Society's Division of Plasma Physics meeting in Portland, Ore. "Our group set out to design an experiment that would measure the propagation of a focal spot at any velocity, including 50 times the speed of light. This required a new diagnostic that could make a movie with frames separated by a trillionth of a second," Froula said (Figure 1). In addition to helping usher in the next generation of high-power lasers, this research has the potential to produce novel light sources such as those that generate light of nearly any color.
Air Force contract Ball Aerospace for laser research Washington (UPI) Oct 22, 2018 Ball Aerospace and Technologies has inked a deal for $36 million with the U.S. Air Force to provide solid state laser effects and modeling services. Under the terms of the cost-reimbursement contract, announced by the Department of Defense on Friday, Ball will deliver innovative diagnostics and test methods, increasing fidelity, realism and confidence of predictive models, measuring and consolidating laser vulnerability data and working synergistically with tri-service for high energy laser sys ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |