. 24/7 Space News .
STELLAR CHEMISTRY
Astronomers catch wind rushing out of galaxy
by Staff Writers
San Diego CA (SPX) Nov 01, 2019

A volume rendering of the ionized gas wind in Makani. Two of the dimensions are spatial, and the third is velocity. The colors trace the velocity axis, shown by the arrow at center. The approximate locations of the two proposed outflow episodes are labeled.

Exploring the influence of galactic winds from a distant galaxy called Makani, UC San Diego's Alison Coil, Rhodes College's David Rupke and a group of collaborators from around the world made a novel discovery.

Published in Nature, their study's findings provide direct evidence for the first time of the role of galactic winds - ejections of gas from galaxies - in creating the circumgalactic medium (CGM). It exists in the regions around galaxies, and it plays an active role in their cosmic evolution. The unique composition of Makani - meaning wind in Hawaiian - uniquely lent itself to the breakthrough findings.

"Makani is not a typical galaxy," noted Coil, a physics professor at UC San Diego. "It's what's known as a late-stage major merger - two recently combined similarly massive galaxies, which came together because of the gravitational pull each felt from the other as they drew nearer. Galaxy mergers often lead to starburst events, when a substantial amount of gas present in the merging galaxies is compressed, resulting in a burst of new star births. Those new stars, in the case of Makani, likely caused the huge outflows - either in stellar winds or at the end of their lives when they exploded as supernovae."

Coil explained that most of the gas in the universe inexplicably appears in the regions surrounding galaxies - not in the galaxies. Typically, when astronomers observe a galaxy, they are not witnessing it undergoing dramatic events - big mergers, the rearrangement of stars, the creation of multiple stars or driving huge, fast winds.

"While these events may occur at some point in a galaxy's life, they'd be relatively brief," noted Coil. "Here, we're actually catching it all right as it's happening through these huge outflows of gas and dust."

Coil and Rupke, the paper's first author, used data collected from the W. M. Keck Observatory's new Keck Cosmic Web Imager (KCWI) instrument, combined with images from the Hubble Space Telescope and the Atacama Large Millimeter Array (ALMA), to draw their conclusions.

The KCWI data provided what the researchers call the "stunning detection" of the ionized oxygen gas to extremely large scales, well beyond the stars in the galaxy. It allowed them to distinguish a fast gaseous outflow launched from the galaxy a few million year ago, from a gas outflow launched hundreds of millions of years earlier that has since slowed significantly.

"The earlier outflow has flowed to large distances from the galaxy, while the fast, recent outflow has not had time to do so," summarized Rupke, associate professor of physics at Rhodes College.

From the Hubble, the researchers procured images of Makani's stars, showing it to be a massive, compact galaxy that resulted from a merger of two once separate galaxies. From ALMA, they could see that the outflow contains molecules as well as atoms.

The data sets indicated that with a mixed population of old, middle-age and young stars, the galaxy might also contain a dust-obscured accreting supermassive black hole. This suggests to the scientists that Makani's properties and timescales are consistent with theoretical models of galactic winds.

"In terms of both their size and speed of travel, the two outflows are consistent with their creation by these past starburst events; they're also consistent with theoretical models of how large and fast winds should be if created by starbursts. So observations and theory are agreeing well here," noted Coil.

Rupke noticed that the hourglass shape of Makani's nebula is strongly reminiscent of similar galactic winds in other galaxies, but that Makani's wind is much larger than in other observed galaxies.

"This means that we can confirm it's actually moving gas from the galaxy into the circumgalactic regions around it, as well as sweeping up more gas from its surroundings as it moves out," Rupke explained. "And it's moving a lot of it - at least one to 10 percent of the visible mass of the entire galaxy - at very high speeds, thousands of kilometers per second."

Rupke also noted that while astronomers are converging on the idea that galactic winds are important for feeding the CGM, most of the evidence has come from theoretical models or observations that don't encompass the entire galaxy.

"Here we have the whole spatial picture for one galaxy, which is a remarkable illustration of what people expected," he said. "Makani's existence provides one of the first direct windows into how a galaxy contributes to the ongoing formation and chemical enrichment of its CGM."

Research paper


Related Links
University of California - San Diego
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
How supergiant stars repeatedly cool and heat up
Brussels, Belgium (SPX) Oct 14, 2019
An international team of professional and amateur astronomers, which includes Alex Lobel, astronomer at the Royal Observatory of Belgium, has determined in detail how the temperature of four yellow hypergiants increases from 4,000 degrees to 8,000 degrees and back again in a few decades. They publish their findings in the professional journal Astronomy and Astrophysics. The researchers analysed the light of four yellow hypergiants that has been observed on Earth over the past 50 to 100 years. Yell ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
US vows closer cooperation with French space agency

Nanoracks and Kayser to jointly open temperature controlled microgravity research on ISS

Travel boom has not made world smaller, says writer Pico Iyer

Falklands banking on king penguins to drive nature tourism

STELLAR CHEMISTRY
US Air Force hosts hypersonics pitch day

DARPA updates competitor field for flexible, responsive launch to orbit

Air-breathing engine precooler achieves record-breaking Mach 5 performance

New rocket fairing design offers smoother quieter ride

STELLAR CHEMISTRY
Mars Express completes 20,000 orbits around the Red Planet

Mars 2020 stands on its own six wheels

New selfie shows Curiosity, the Mars chemist

Naming a NASA Mars rover can change your life

STELLAR CHEMISTRY
China plans more space science satellites

China's absence from global space conference due to "visa problem" causes concern

China prepares for space station construction

China's rocket-carrying ships depart for transportation mission

STELLAR CHEMISTRY
European network of operations centres takes shape

SpaceX to launch 42,000 satellites

D-Orbit signs contract with OneWeb in the frame of ESA project Sunrise

Space: a major legal void

STELLAR CHEMISTRY
Las Cumbres helping to develope a Cyberinfrastructure Institute for Astronomical Data

What About Space Traffic Management?

New procedure for obtaining a cheap ultra-hard material that is resistant to radioactivity

OMG developing new standard for interface for Software Defined Radios

STELLAR CHEMISTRY
TESS reveals an improbable planet

Building blocks of all life gain new understanding

Simulations explain giant exoplanets with eccentric, close-in orbits

Cascades of gas around young star indicate early stages of planet formation

STELLAR CHEMISTRY
SwRI to plan Pluto orbiter mission

NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.