. 24/7 Space News .
ENERGY TECH
Army, UMD researchers develop water-based lithium-ion batteries that don't explode
by Staff Writers
Adelphi MD (SPX) Sep 13, 2017


These are four V Li-ion batteries assembled with water-in-salt gel electrolyte.

Researchers at the U.S. Army Research Laboratory and the University of Maryland have developed for the first time a lithium-ion battery that uses a water-salt solution as its electrolyte and reaches the 4.0 volt mark desired for household electronics, such as laptop computers, without the fire and explosive risks associated with some commercially available non-aqueous lithium-ion batteries.

This technology will bring the Soldiers a "completely safe and flexible Li-ion battery that provides identical energy density as the SOA Li-ion batteries. The batteries will remain safe - without fire and explosion - even under severe mechanical abuses," said co-senior author Dr. Kang Xu, ARL fellow who specializes in electrochemistry and materials science.

"In the past, if you wanted high energy, you would choose a non-aqueous lithium-ion battery, but you would have to compromise on safety. If you preferred safety, you could use an aqueous battery such as nickel/metal hydride, but you would have to settle for lower energy," Xu said.

"Now, we are showing that you can simultaneously have access to both high energy and high safety."

The research follows a 2015 study in Science (doi: 10.1126/science.aab1595) that produced a similar 3.0 volt battery with an aqueous electrolyte but was stymied from achieving higher voltages by the so-called "cathodic challenge," in which one end of the battery, made from either graphite or lithium metal, is degraded by the aqueous electrolyte.

To solve this problem and make the leap from three volts to four, the first author, University of Maryland assistant research scientist Chongyin Yang, designed a new gel polymer electrolyte coating that can be applied to the graphite or lithium anode.

This hydrophobic coating expels water molecules from the vicinity of the electrode surface and then, upon charging for the first time, decomposes and forms a stable interphase--a thin mixture of breakdown products that separates the solid anode from the liquid electrolyte.

This interphase, inspired by a layer generated within non-aqueous batteries, protects the anode from debilitating side reactions, allowing the battery to use desirable anode materials, such as graphite or lithium metal, and achieve better energy density and cycling ability.

"The key innovation here is making the right gel that can block water contact with the anode so that the water doesn't decompose and can also form the right interphase to support high battery performance," said co-senior author Chunsheng Wang, Professor of Chemical and Biomolecular Engineering at the University of Maryland's A. James Clark School of Engineering.

The addition of the gel coating also boosts the safety advantages of the new battery when compared to standard non-aqueous lithium-ion batteries and boosts the energy density when compared to any other proposed aqueous lithium-ion batteries. All aqueous lithium-ion batteries benefit from the inflammability of water-based electrolytes as opposed to the highly flammable organic solvents used in their non-aqueous counterparts.

Unique to this one, however, is that even when the interphase layer is damaged (if the battery casing were punctured, for instance), it reacts slowly with the lithium or lithiated graphite anode, preventing the smoking, fire, or explosion that could otherwise occur if a damaged battery brought the metal into direct contact with the electrolyte.

Though the power and energy density of the new battery are suitable for commercial applications currently served by more hazardous non-aqueous batteries, certain improvements would make it even more competitive. In particular, the researchers would like to increase the number of full-performance cycles that the battery can complete and to reduce material expenses where possible. "Right now, we are talking about 50-100 cycles, but to compare with organic electrolyte batteries, we want to get to 500 or more," Wang said.

The researchers also note that the electrochemical manipulations behind the jump to four volts have importance within battery technology and beyond. "This is the first time that we are able to stabilize really reactive anodes like graphite and lithium in aqueous media," says Xu.

"This opens a broad window into many different topics in electrochemistry, including sodium-ion batteries, lithium-sulfur batteries, multiple ion chemistries involving zinc and magnesium, or even electroplating and electrochemical synthesis; we just have not fully explored them yet."

Xu said the interphase chemistry needs to be perfected before it can be commercialized. He also said more work needs to be done on scaling up the technology in big cells for testing. With enough funding, the 4-volt chemistry could be ready for commercializing in about five years, he said.

Their work appears Sept. 6, 2017, in Joule, Cell Press's new interdisciplinary energy journal.

Research Report: Joule, Yang et al.: "4.0 V Aqueous Li-ion Batteries"

ENERGY TECH
Scientists unveil explosion-free lithium-ion batteries
Washington (UPI) Sep 6, 2017
YouTube videos of exploding phones and hover boards have highlighted the risks of powering devices with lithium-ion batteries. But researchers at the U.S. Army Research Laboratory and the University of Maryland have come up with a solution - a water-based solution. Scientists have developed a batter that uses a water-salt solution as the electrolyte medium. The electrolyte helps ferry ... read more

Related Links
US Army Research Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Crewed Missions Beyond LEO

Three astronauts blast off for five-month ISS mission

NASA Offers Space Station as Catalyst for Discovery in Washington

Voyager Spacecraft: 40 Years of Solar System Discoveries

ENERGY TECH
Rocket fever launches UB students to engineering competition in New Mexico

Arianespace announces a new contract, bringing its order book to 53 launches across three rockets

EUMETSAT signs with Arianespace for first Metop-SG satellite launch

MHI to launch first Inmarsat-6 satellite

ENERGY TECH
45 Kilometers on the Odometry for Opportunity

Discovery of boron on Mars adds to evidence for habitability

New tools for exploring the surface of Mars

NASA's Curiosity Mars Rover Climbing Toward Ridge Top

ENERGY TECH
China, Russia to Have Smooth Space Cooperation, Says Expert

Kuaizhou-11 to send six satellites into space

Russia, China May Sign 5-Year Agreement on Joint Space Exploration

ESA and Chinese astronauts train together

ENERGY TECH
ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Bids for government funding prove strong interest in LaunchUK

Blue Sky Network Reaffirms Commitment to Brazilian Market

ENERGY TECH
Two new satellites now operational to expand US space situational awareness

Ultrathin spacecraft will collect, deposit orbital debris

192 Indian space objects currently in orbit

New microscopy method for quick and reliable 3-D imaging of curvilinear nanostructures

ENERGY TECH
X-Rays Reveal Temperament of Possible Planet-Hosting Stars

Does the Organic Material of Comets Predate our Solar System?

X-rays Reveal Temperament of Possible Planet-hosting Stars

Could TRAPPIST-1's Seven Earth-size Planets Have Gas Giant Siblings

ENERGY TECH
Jupiter's Auroras Present a Powerful Mystery

Pluto features given first official names

New Horizons Files Flight Plan for 2019 Flyby

Hibernation Over, New Horizons Continues Kuiper Belt Cruise









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.