Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















CARBON WORLDS
A new platform to study graphene's electronic properties
by Staff Writers
Seoul, South Korea (SPX) Feb 14, 2017


(Left) Nanodevice structure to measure graphene's electronic properties. Graphene is sandwiched between two hBTN layers and the two electrodes (graphite and silicon). (Right) Conductance of single layer graphene at different voltages, showing the dip at around 350 mV. Image courtesy IBS.

Graphene's unusual electronic structure enables this extraordinary material to break many records of strength, electricity and heat conduction. Physicists at the Center for Theoretical Physics of Complex Systems (PCS), in collaboration with the Research Institute for Standards and Science (KRISS), used a model to explain the electronic structure of graphene measured by a new spectroscopic platform. These techniques, published in the journal Nano Letters, could promote future research on stable and accurate quantum measurements for new 2D electronics.

Recently, interest in 2D materials has risen exponentially in both academia and industry. These materials are made by extremely thin sheets, which have different physical properties compared to conventional 3D materials. Moreover, when different 2D sheets are stacked on the top of each other, new electrical, optical, and thermal properties emerge.

One of the most promising and much studied 2D materials is graphene: a single sheet of carbon atoms. In order to study the electronic properties of both single and double layer graphene, the team constructed a nanodevice with graphene sandwiched between two layers of an insulating material known as hexagonal boron nitride (hBN). On top of this device they placed graphite as electrode. Graphite is essentially made up of hundreds of thousands of layers of graphene. The bottom layer consisted of one layer of silicon and one of silica.

By tuning the voltages applied via the graphite and the silicon, the scientists measured the changes in the conductance of graphene, which reflects its electronic properties. The electrons of graphene have a particular energy structure, represented by the so-called Dirac cone, which is actually made by two cones that look like a sandglass, with only an infinitesimally small point in between (Dirac Point). You can think of it as an unusual cocktail glass shaped liked a sandglass, where the drink plays the function of the graphene's electrons.

At temperature close to zero Kelvin (-273 degrees Celsius), the electrons pack into the lowest available energy states and fill up the double-cone glass from the bottom up, until a certain energy level, called Fermi level, is reached. Applying a negative voltage via the silicon and graphite layers is equivalent to drinking from the glass, while a positive voltage has the same effect as adding liquid to the glass.

Through modulating the applied voltages, the scientists could deduce the electronic structure of graphene by following the Fermi level. In particular, they noticed that when the voltage applied to graphite is around 350 milliVolts, there is a dip in the conductance measurement, by which the Fermi level matches with the Dirac point. This is a well-known property of single layer graphene.

Finally, the electrical properties change again when a magnetic field is applied to the single layer graphene. In this case, instead of a sandglass cocktail glass, the energy of the electrons is more similar to a ladder where electrons of increasing energies can be found on the higher rungs.

Gaps between the ladder rungs are devoid of electrons, while the steps fill with electrons from the bottom upwards. Interestingly, the data obtained by the scientists of KRISS was successfully reproduced by the theoretical physicists at IBS showed more than 40 rungs, technically known as Landau levels. Each level clearly distinguished because of the low background noise.

Indeed, the scientists could also match the theoretical and experimental data relative to the electronic properties of bilayer graphene. Double layer graphene, has a different conductance behavior with a broader dip, better known as an energy gap. In the presence of an electric field perpendicular to it, this energy gap makes double layer graphene more similar to the current tunable semiconductors.

"We used an intuitive model to reproduce the experimental measurement and we gave a theoretical explanation to why these energy configurations form with single and double layer graphene," explains MYOUNG Nojoon, first co-author of this study.

"This model provides a gauge between voltages and energy in spectroscopic measurements, and we believe that this is a fundamental step to study graphene's electronic properties further."

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.

.


Related Links
Institute for Basic Science
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
UNIST to engineer dream diodes with a graphene interlayer
Ulsan, South Korea (SPX) Feb 10, 2017
A team of researchers, affiliated with UNIST has created a new technique that greatly enhances the performance of Schottky Diodes (metal-semiconductor junction) used in electronic devices. Their research findings have attracted considerable attention within the scientific community by solving the contact resistance problem of metal-semiconductor, which had remained unsolved for almost 50 years. ... read more


CARBON WORLDS
Looking to the future: Russia, US mull post-ISS cooperation in space

Progress Underway for First Commercial Airlock on Space Station

A new recruit for ESA's astronaut corps

The Outer Space Treaty has been remarkably successful - but is it fit for the modern age?

CARBON WORLDS
Airbus Safran Launchers: 77th consecutive successful launch for Ariane 5

India puts record 104 satellites into orbit

SpaceX Falcon 9 rocket vertical at Florida's Kennedy Space Center

India to launch record 104 satellites next week

CARBON WORLDS
ISRO saves its Mars mission spacecraft from eclipse

Mars Reconnaissance Orbiter plays crucial role in search for landing sites

Angling up for Mars science

Swirling spirals at the north pole of Mars

CARBON WORLDS
China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

CARBON WORLDS
NASA seeks partnerships with US companies to advance commercial space technologies

A New Space Paradigm

Why it's time for Australia to launch its own space agency

Government announces boost for UK commercial space sector

CARBON WORLDS
Terahertz chips a new way of seeing through matter

Cooling roofs and other structures with no energy

Researchers engineer thubber a stretchable rubber that packs a thermal conductive punch

Penn researchers are among the first to grow a versatile 2-dimensional material

CARBON WORLDS
NASA finds planets of red dwarf stars may face oxygen loss in habitable zones

Dwarf star 200 light years away contains life's building blocks

Santa Fe Institute researchers look for life's lower limits

Dedicated Planet Imager Opens Its Eyes to Other Worlds

CARBON WORLDS
NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby

It's Never 'Groundhog Day' at Jupiter

Public to Choose Jupiter Picture Sites for NASA Juno




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement