. 24/7 Space News .
Dedicated Planet Imager Opens Its Eyes to Other Worlds
by Staff Writers
Hilo HI (SPX) Feb 03, 2017

Comparison of images taken from existing, facility instrument (AO 188 + HiCIAO, left) and the newly commissioned instrument (AO 188 + SCExAO, right). Image courtesy NAOJ. For a larger version of this image please go here.

An astronomical instrument on Maunakea specifically designed to see planets around other stars has been successfully commissioned and has started to reveal stunning images of other worlds after almost a decade of painstaking work. "Maunakea is the best place on this planet to see planets in other stellar systems. Now, we finally have an instrument designed to utilize this mountain's special gifts and the results are breathtaking," exclaims Dr. Thayne Currie, who authored the first science result paper.

While the first planets ever seen around another star were imaged from Maunakea, these discoveries were made with general-purpose instruments. With the commissioning of a new instrument at the Subaru Telescope called SCExAO (Subaru Coronagraphic Extreme Adaptive Optics), specifically designed and optimized for imaging planets by employing experimental technology, joins recently commissioned extreme AO instruments in Chile and Arizona.

With SCExAO, Maunakea reaffirms its leading role in the direct detection and exploration of other worlds, eventually those that may resemble that of the Earth. So far, about a dozen planets have been directly discovered by imaging techniques using current AO systems. The list includes two from the Subaru Telescope (kappa And b and GJ 504 b. These planets are 4 to 13 times more massive than Jupiter and located further from their host star than Neptune is from our Sun.

Being an extreme AO system, SCExAO allows us to image planets with masses and orbital separations much more like those in our own solar system by better compensating for the blurring of images due to turbulent air at the telescope site. Compared to the facility, multi-purpose AO system (AO188) at the Subaru Telescope, SCExAO is able to compensate more precisely for how the atmosphere blurs images of stars and does so at a faster rate. As a result, SCExAO now delivers far, far sharper images: with a reduced glare from the star, imaging fainter, more solar system-like planets becomes possible.

SCExAO H-band (1.6 microns) data for the benchmark directly-imaged planetary system HR 8799, which hosts the first planets ever directly imaged, demonstrates the system's improved capabilities over facility AO systems. The planets around HR 8799 are faint at H-band compared to longer wavelengths.

Existing facility AO systems such as the one at Keck or Subaru Telescopes so far detected two or three out of the four planets at H-band. However, SCExAO engineering data obtained in July 2016 coupled with the general-purpose HiCIAO camera easily detects all four of them and at a far better sensitivity.

Follow-up SCExAO data obtained in Fall 2016 for HR 8799 with the new CHARIS integral field spectrograph resulted in even clearer detections of system's inner three planets and high-quality spectra that will allow us to diagnose the chemical composition of these planets' atmospheres.

The most recent SCExAO/CHARIS data (obtained in December) suggests that the system has improved further, about as sensitive to detecting planets/planet-forming disks in one minute as the current facility AO systems would achieve in one hour.

"With SCExAO, we know not only the presence of a planet but also its character such as whether it is cloudy and what molecules it has, even if that planet is tens of trillions of miles away," says the leader of SCExAO project Dr. Olivier Guyon excitedly.

Early Discovery from SCExAO
After just a few nights of having achieved true extreme AO capability, SCExAO made its first discovery. Last October, SCExAO revealed the first images of a debris disk around a star called HD 36546, a 2-solar-mass star in the constellation Taurus.

The debris disk appears nearly edge on, is located about twice the distance from its star that the Kuiper belt is from the Sun, and is likely comprised of debris produced as a byproduct of icy planet formation.

By comparing HD 36546's space motion to that for other stars in similar parts of the sky, the team showed that it is likely a member of a young association of stars born about 3 to 10 million years ago. At such a young age, the debris disk around HD 36546 might be the youngest debris disk ever imaged and is a critical laboratory for studying the earliest stages of icy planet formation.

Although SCExAO detected no planets responsible for sculpting this debris disk, it achieved planet detection sensitivities during this early stage of its development that rival/match the best planet imaging systems from other sites that have been fully commissioned.

Dr. Nemanja Jovanovic who has been working on the instrument says, "We barely flipped the 'on' switch for SCExAO and already saw a new planetary system. The future, which includes a fully optimized SCExAO, is extremely promising."

The research paper describing the discovery of the HD 36546 disk is now accepted for publication in the Astrophysical Journal Letters.

What's Next?
In 2017, SCExAO will undergo further improvements that will allow it to image even fainter planets orbiting much closer to their host stars. Combining SCExAO with an experimental detector scheduled for delivery in late 2017 will eventually allow it to discover planets 10 to 100 times fainter than those it can currently see, including mature planets in reflected light.

CHARIS will continue additional engineering tests throughout 2017 to improve its capabilities. SCExAO, combined with either HiCIAO or CHARIS, is available for open use in 2017 for the worldwide astronomical community.

Over the longer term, SCExAO on Subaru Telescope is a forerunner for the kind of exoplanet imaging instruments envisioned the next generation of large telescopes, in particular the Thirty Meter Telescope. Dr. Currie proclaims, "SCExAO is the type of instrument that will one day show us another planet that might be like the Earth. This is the kind of new knowledge that makes Thirty Meter Telescope worth it for Hawaii."

Comment on this article using your Disqus, Facebook, Google or Twitter login.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Subaru Telescope
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
New planet imager delivers first science at Keck
Pasadena CA (JPL) Jan 31, 2017
A new device on the W.M. Keck Observatory in Hawaii has delivered its first images, showing a ring of planet-forming dust around a star, and separately, a cool, star-like body, called a brown dwarf, lying near its companion star. The device, called a vortex coronagraph, was recently installed inside NIRC2 (Near Infrared Camera 2), the workhorse infrared imaging camera at Keck. It has the potenti ... read more

Full Braking at Alpha Centauri

New Era of Space Travel: Private Station May Replace ISS by Late 2020

The Outer Space Treaty has been remarkably successful - but is it fit for the modern age?

Progress MS-03 cargo spacecraft to reenter January 31

ISRO tests C25 Cryogenic Upper Stage of GSLV MkIII

NASA sounding rocket launches into Alaskan night

SmallGEO's first flight reaches orbit

Russia to check space flight engines over faulty parts

Meteorite reveals 2 billion years of volcanic activity on Mars

Opportunity marks 13 years of ground operations on Mars

Similar-Looking Ridges on Mars Have Diverse Origins

Commercial Crew's Role in Path to Mars

China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

Iridium Adds Eighth Launch with SpaceX for Satellite Rideshare

Space, Ukrainian-style: Through Crisis to Revival

ESA Planetary Science Archive gets a new look

Iridium-1 NEXT Launched on a Falcon 9

NASA's New Shape-Shifting Radiator Inspired by Origami

Space Traffic Management

Japan 'space junk' collector in trouble

Anatomy of a debris incident

New planet imager delivers first science at Keck

Dedicated Planet Imager Opens Its Eyes to Other Worlds

First footage of a living stylodactylid shrimp filter-feeding at depth of 4826m

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

Public to Choose Jupiter Picture Sites for NASA Juno

Experiment resolves mystery about wind flows on Jupiter

Pluto Global Color Map

Lowell Observatory to renovate Pluto discovery telescope

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.