. 24/7 Space News .
TECH SPACE
Terahertz chips a new way of seeing through matter
by Staff Writers
Princeton NJ (SPX) Feb 10, 2017


Princeton University researchers have drastically shrunk the equipment for producing terahertz -- important electromagnetic pulses lasting one millionth of a millionth of a second -- from a tabletop setup with lasers and mirrors to a pair of microchips small enough to fit on a fingertip (above). The simpler, cheaper generation of terahertz has potential for advances in medical imaging, communications and drug development. Image courtesy Frank Wojciechowski for the Office of Engineering Communications.

Electromagnetic pulses lasting one millionth of a millionth of a second may hold the key to advances in medical imaging, communications and drug development. But the pulses, called terahertz waves, have long required elaborate and expensive equipment to use. Now, researchers at Princeton University have drastically shrunk much of that equipment: moving from a tabletop setup with lasers and mirrors to a pair of microchips small enough to fit on a fingertip.

In two articles recently published in the IEEE Journal of Solid State Circuits, the researchers describe one microchip that can generate terahertz waves, and a second chip that can capture and read intricate details of these waves.

"The system is realized in the same silicon chip technology that powers all modern electronic devices from smartphones to tablets, and therefore costs only a few dollars to make on a large scale" said lead researcher Kaushik Sengupta, a Princeton assistant professor of electrical engineering.

Terahertz waves are part of the electromagnetic spectrum - the broad class of waves that includes radio, X-rays and visible light - and sit between the microwave and infrared light wavebands. The waves have some unique characteristics that make them interesting to science. For one, they pass through most non-conducting material, so they could be used to peer through clothing or boxes for security purposes, and because they have less energy than X-rays, they don't damage human tissue or DNA.

Terahertz waves also interact in distinct ways with different chemicals, so they can be used to characterize specific substances. Known as spectroscopy, the ability to use light waves to analyze material is one of the most promising - and the most challenging - applications of terahertz technology, Sengupta said.

To do it, scientists shine a broad range of terahertz waves on a target then observe how the waves change after interacting with it. The human eye performs a similar type of spectroscopy with visible light - we see a leaf as green because light in the green light frequency bounces off the chlorophyll-laden leaf.

The challenge has been that generating a broad range of terahertz waves and interpreting their interaction with a target requires a complex array of equipment such as bulky terahertz generators or ultrafast lasers. The equipment's size and expense make the technology impractical for most applications.

Researchers have been working for years to simplify these systems. In September, Sengupta's team reported a way to reduce the size of the terahertz generator and the apparatus that interprets the returning waves to a millimeter-sized chip. The solution lies in re-imaging how an antenna functions. When terahertz waves interact with a metal structure inside the chip, they create a complex distribution of electromagnetic fields that are unique to the incident signal. Typically, these subtle fields are ignored, but the researchers realized that they could read the patterns as a sort of signature to identify the waves. The entire process can be accomplished with tiny devices inside the microchip that read terahertz waves.

"Instead of directly reading the waves, we are interpreting the patterns created by the waves," Sengupta said. "It is somewhat like looking for a pattern of raindrops by the ripples they make in a pond."

Daniel Mittleman, a professor of engineering at Brown University, said the development was "a very innovative piece of work, and it potentially has a lot of impact." Mittleman, who is the vice chair of the International Society for Infrared Millimeter and Terahertz Waves, said scientists still have work to do before the terahertz band can begin to be used in everyday devices, but the developments are promising.

"It is a very big puzzle with many pieces, and this is just one, but it is a very important one," said Mittleman, who is familiar with the work but had no role in it.

On the terahertz-generation end, much of the challenge is creating a wide range of wavelengths within the terahertz band, particularly in a microchip. The researchers realized they could overcome the problem by generating multiple wavelengths on the chip. They then used precise timing to combine these wavelengths and create very sharp terahertz pulses.

In an article published Dec. 14 in the IEEE Journal of Solid State Circuits, the researchers explained how they created a chip to generate the terahertz waves. The next step, the researchers said, is to extend the work farther along the terahertz band. "Right now we are working with the lower part of the terahertz band," said Xue Wu, a Princeton doctoral student in electrical engineering and an author on both papers.

"What can you do with a billion transistors operating at terahertz frequencies?" Sengupta asked. "Only by re-imagining these complex electromagnetic interactions from fundamental principles can we invent game-changing new technology."

The paper "On-chip THz spectroscope exploiting electromagnetic scattering with multi-port antenna" was published Sept. 2, and the paper "Dynamic waveform shaping with picosecond time widths" was published Dec. 14, both by IEEE Journal of Solid State Circuits. The research was supported in part by the National Science Foundation's Division of Electrical, Communications and Cyber Systems (grant nos. ECCS-1408490 and ECCS-1509560).

TECH SPACE
Penn researchers are among the first to grow a versatile 2-dimensional material
Philadelphia PA (SPX) Feb 17, 2017
University of Pennsylvania researchers are now among the first to produce a single, three-atom-thick layer of a unique two-dimensional material called tungsten ditelluride. Their findings have been published in 2-D Materials. Unlike other two-dimensional materials, scientists believe tungsten ditelluride has what are called topological electronic states. This means that it can have many di ... read more

Related Links
Princeton University, Engineering School
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Russia to carry out tourist flights around Moon by 2022

NASA selects proposals for first-ever Space Technology Research Institutes

NASA saves energy and water with new modular supercomputing facility

Russian cargo ship docks with space station

TECH SPACE
SpaceX cargo ship arrives at space station

Sounding Rocket Flies in Alaska to Study Auroras

Russian Aviation Company S7 Group restructures

Energia to make 2 modifications of Federatsiya spaceship

TECH SPACE
Opportunity leaving crater rim for the Plains of Meridiani

NASA mulls putting astronauts on deep space test flight

Scientists say Mars valley was flooded with water not long ago

Researchers pinpoint watery past on Mars

TECH SPACE
China to launch first high-throughput communications satellite in April

Chinese cargo spacecraft set for liftoff in April

China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

TECH SPACE
Kacific places order with Boeing for a high throughput satellite

ESA affirms Open Access policy for images, videos and data

Iridium Announces Target Date for Second Launch of Iridium NEXT

Italy, Russia working closely on Mars exploration, Earth monitoring satellites

TECH SPACE
Terahertz chips a new way of seeing through matter

New metamaterial is first to achieve performance as predicted by theoretical bounds

Designing new materials from 'small' data

Raytheon gets contract for Silent Knight radar systems

TECH SPACE
Does Pluto Have The Ingredients For Life?

From Rocks, Evidence of a 'Chaotic Solar System'

Ultracool Dwarf and the Seven Planets

Seven Earth-like planets discovered around single star

TECH SPACE
Europa Flyby Mission Moves into Design Phase

Juno to remain in current orbit at Jupiter

NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.