. 24/7 Space News .
TIME AND SPACE
X-rays Spot Spinning Black Holes Across Cosmic Sea
by Staff Writers
Huntsville AL (SPX) Jul 05, 2019

Image credit: NASA/CXC/Univ. of Oklahoma/X. Dai et al.

Like whirlpools in the ocean, spinning black holes in space create a swirling torrent around them. However, black holes do not create eddies of wind or water. Rather, they generate disks of gas and dust heated to hundreds of millions of degrees that glow in X-ray light.

Using data from NASA's Chandra X-ray Observatory and chance alignments across billions of light years, astronomers have deployed a new technique to measure the spin of five supermassive black holes. The matter in one of these cosmic vortices is swirling around its black hole at greater than about 70% of the speed of light.

The astronomers took advantage of a natural phenomenon called a gravitational lens. With just the right alignment, the bending of space-time by a massive object, such as a large galaxy, can magnify and produce multiple images of a distant object, as predicted by Einstein.

In this latest research, astronomers used Chandra and gravitational lensing to study six quasars, each consisting of a supermassive black hole rapidly consuming matter from a surrounding accretion disk.

Gravitational lensing of the light from each of these quasars by an intervening galaxy has created multiple images of each quasar, as shown by these Chandra images of four of the targets. The sharp imaging ability of Chandra is needed to separate the multiple, lensed images of each quasar.

The key advance made by researchers in this study was that they took advantage of "microlensing," where individual stars in the intervening, lensing galaxy provided additional magnification of the light from the quasar. A higher magnification means a smaller region is producing the X-ray emission.

The researchers then used the property that a spinning black hole is dragging space around with it and allows matter to orbit closer to the black hole than is possible for a non-spinning black hole.

Therefore, a smaller emitting region corresponding to a tight orbit generally implies a more rapidly spinning black hole. The authors concluded from their microlensing analysis that the X-rays come from such a small region that the black holes must be spinning rapidly.

The results showed that one of the black holes, in the lensed quasar called the "Einstein Cross," is spinning at, or almost at, the maximum rate possible. This corresponds to the event horizon, the black hole's point of no return, spinning at the speed of light, which is about 670 million miles per hour. Four other black holes in the sample are spinning, on average, at about half this maximum rate. (The 6th did not enable an estimate of spin.)

For the Einstein Cross the X-ray emission is from a part of the disk that is less than about 2.5 times the size of the event horizon, and for the other 4 quasars the X-rays come from a region four to five times the size of the event horizon.

How can these black holes spin so quickly? The researchers think that these supermassive black holes likely grew by accumulating most of their material over billions of years from an accretion disk spinning with a similar orientation and direction of spin, rather than from random directions. Like a merry-go-round that keeps getting pushed in the same direction, the black holes kept picking up speed.

The X-rays detected by Chandra are produced when the accretion disk surrounding the black hole creates a multimillion-degree cloud, or corona, above the disk near the black hole. X-rays from this corona reflect off the inner edge of the accretion disk, and the strong gravitational forces near the black hole distort the reflected X-ray spectrum, that is, the amount of X-rays seen at different energies.

The large distortions seen in the X-ray spectra of the quasars studied here imply that the inner edge of the disk must be close to the black holes, giving further evidence that they must be spinning rapidly.

The quasars are located at distances ranging from 8.8 billion to 10.9 billion light years from Earth, and the black holes have masses between 160 and 500 million times that of the sun. These observations were the longest ever made with Chandra of gravitationally lensed quasars, with total exposure times ranging between 1.7 and 5.4 days.

A paper describing these results is published in the July 2nd issue of The Astrophysical Journal, and is available online. The authors are Xinyu Dai, Shaun Steele and Eduardo Guerras from the University of Oklahoma in Norman, Oklahoma, Christopher Morgan from the United States Naval Academy in Annapolis, Maryland, and Bin Chen from Florida State University in Tallahassee, Florida.

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.


Related Links
Chandra
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Astronomers Discover Eight Buried Dual AGN Candidates
Lyon, France (SPX) Jun 28, 2019
Astronomers discovered eight buried dual AGN candidates, the largest sample of hidden accreting supermassive black holes in late stage galaxy mergers, selected using NASA's Wide-Field Infrared Survey Explorer (WISE) space telescope. This result will be presented by graduate student Ryan Pfeifle of George Mason University (Fairfax, Virginia, USA) at the annual meeting of the European Astronomical Society EWASS 2019, in Lyon, France, on Friday, 28 June. Observational campaigns and theoretical ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
What a Space Vacation Deal

LightSail 2 phones home to mission control

Aerojet Rocketdyne Delivers Orion Auxiliary Engines for Artemis 2

Left in the Dust: Poll Reveals Americans Don't Believe US Leads in Space Exploration

TIME AND SPACE
ULA says malfunction of Russian RD-180 rocket engine occurred in 2018 during Atlas V launch

Rocket Lab successfully launches seventh Electron mission, deploys seven satellites to orbit

ESA expertise to support Portugal's launch program

Last Test Article for NASA's SLS Rocket Departs Michoud Assembly Facility

TIME AND SPACE
Mars 2020 Rover Gets a Super Instrument

Mars 2020 Rover's 7-Foot-Long Robotic Arm Installed

Inflatable Decelerator Will Hitch a Ride on the JPSS-2 Satellite

A chaos found only on Mars

TIME AND SPACE
China plans to deploy almost 200 AU-controlled satellites into orbit

Luokung and Land Space to develop control system for space and ground assets

Yaogan-33 launch fails in north China, Possible debris recovered in Laos

China develops new-generation rockets for upcoming missions

TIME AND SPACE
Israeli space tech firm hiSky expands to the UK

All-alectric Maxar 1300-Class comsat delivers broadcast services for Eutelsat customers

Newtec collaborates with QinetiQ, marking move into space sector

RBC Signals awarded SBIR Phase I contract by US Air Force

TIME AND SPACE
First taste of space for Spacebus Neo satellite

ThinKom completes technology validation on Telesat low-earth orbit satellite

ATLAS expands on-orbit customer base, bolsters global ground network

Space Weather causes years of radiation damage to satellites using electric propulsion

TIME AND SPACE
Planet Seeding and Panspermia

ALMA Pinpoints Formation Site of Planet Around Nearest Young Star

NASA's TESS Mission Finds Its Smallest Planet Yet

Cyanide Compounds Discovered in Meteorites May Hold Clues to the Origin of Life

TIME AND SPACE
Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings

Table salt compound spotted on Europa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.