. | . |
Space Weather causes years of radiation damage to satellites using electric propulsion by Staff Writers London, UK (SPX) Jul 02, 2019
The use of electric propulsion for raising satellites into geostationary orbit can result in significant solar cell degradation according to a new study. The extended journey results in greater exposure to the damaging effects of space weather. Understanding the size of this risk is essential for commercial operators to take steps to mitigate the effects and protect their assets. The new research by British Antarctic Survey, University of Cambridge, and DH Consultancy - published this month in the journal Space Weather - is being presented at the Royal Astronomical Society's National Astronomy Meeting 1 July 2019. The study concludes that after a radiation storm, maximum solar cell output power could be reduced by up to 8% by the time satellites reach their target destination using electric orbit raising. This is equivalent to the level of damage that would be expected after spending around 15 years at geostationary orbit. During a radiation storm, charged particles released by the Sun become trapped within Earth's magnetic field, forming the Van Allen radiation belts which encircle Earth, and collisions with these charged particles causes damage to the solar cells. This degradation is up to 8% of output power in a worst-case scenario, but even in a quiet environment, the study predicts a 1-3% reduction in output. Lead author Alexander Lozinski, a space weather scientist at the British Antarctic Survey (BAS), comments: "Now we understand the level of damage caused by a slower journey into geostationary orbit, commercial satellite operators can plan optimal routes during the mission design and planning phases to ensure the best lifespan for their products". In the last four years commercial satellite missions have begun to employ the use of electric propulsion for orbit raising. Without the need to carry chemical propellant onboard, satellite size and mass can be reduced, resulting in significant cost savings. Reducing the size of satellites could make it possible to launch two spacecraft on the same rocket (almost halving the cost of launch). Alternatively, the savings in mass could be used to accommodate additional/larger payloads, enabling increased revenue or greater technical capability. In a conventional launch the satellite is placed into a geostationary transfer orbit by the launch vehicle and uses chemical propellants to reach geosynchronous orbit. This orbital transfer manoeuvre typically takes a few days. However, when (solely) electric propulsion is used, it can take up to 200 days to reach the target orbit due to lower thrust. This results in satellites spending a longer in the Van Allen belts, where they are exposed to the harmful effects of space radiation. "We studied three different types of orbit raising and found that although 8% degradation is very high, careful choice of orbit and shielding can reduce this to an acceptable level," says Lozinski. "For example, transfer orbits with a high initial apogee (maximum altitude) allow satellites to pass through regions where trapped protons are present, at greater speed, reducing the level of damage from radiation." "Commercial satellites with all-electric propulsion were first introduced in 2015" says Professor Richard Horne, Head of the Space Weather team at BAS. "We never expected such a large reduction in power from a radiation storm. The good thing is that this study will help the satellite industry to plan the best orbit which reduces radiation damage".
Research Report: "Solar Cell Degradation due to Proton Belt Enhancements During Electric Orbit Raising to GEO"
How NASA Prepares Spacecraft for the Harsh Radiation of Space Greenbelt MD (SPX) Jun 11, 2019 In a small, square room walled by four feet of concrete, the air smells as if a lightning storm just passed through - crisp and acrid, like cleaning supplies. Outside, that's the smell of lightning ripping apart oxygen in the air, which readily reshuffles into ozone. But belowground in one of the rooms at NASA's Radiation Effects Facility, the smell of ozone lingers after high-energy radiation tests. The radiation that engineers use to test electronics for spaceflight is so powerful it shreds the ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |