. 24/7 Space News .
MICROSAT BLITZ
X-ray navigation considered for possible CubeSat mission
by Lori Keesey for GSFC News
Greenbelt MD (SPX) May 04, 2018

This rendering shows the conceptual CubeX spacecraft, which would demonstrate X-ray navigation during its mission investigating the Moon.

Now that NASA has shown the viability of autonomous X-ray navigation in space, a team led by the Smithsonian Astrophysical Observatory plans to include the technology on a proposed CubeSat mission to the Moon, and NASA engineers are now studying the possibly of adding the capability to future human-exploration spacecraft.

Interest in this emerging capability to guide spacecraft to the far reaches of the solar system comes just months after NASA scientist Keith Gendreau and his team at the agency's Goddard Space Flight Center in Greenbelt, Maryland, successfully demonstrated the technique - commonly known as XNAV - with an experiment called Station Explorer for X-ray Timing and Navigation Technology, or SEXTANT.

The SEXTANT technology demonstration, which NASA's Space Technology Mission Directorate had funded under its Game Changing Development program, took place late last year and demonstrated that millisecond pulsars could be used to accurately determine the location of an object moving at thousands of miles per hour in space. These pulsations are highly predictable, much like the atomic clocks used to provide timing data on the ubiquitous GPS system.

During the demonstration, SEXTANT took advantage of the 52 X-ray telescopes and silicon drift detectors on NASA's Neutron-star Interior Composition Explorer, or NICER, to detect X-rays emanating from four millisecond-pulsar targets. The pulsars' timing data were fed into onboard algorithms that autonomously generated a navigation solution for the location of NICER in orbit around Earth.

The team is expected to carry out another XNAV demonstration later this spring to see if it can improve on the technology's already impressive accuracy, said SEXTANT Project Manager Jason Mitchell, who works at Goddard.

Navigation Testbed
In another development that could broaden XNAV's use, the SEXTANT team recently delivered a special testbed to the Aeromechanics and Flight Mechanics Division's Electro-Optics Lab at NASA's Johnson Space Center in Houston. The team developed the unique tabletop device - sometimes described as a 'pulsar on a table' - to simulate the low-strength signals received from pulsars. The measurements obtained from XNAV will be used to test algorithms being developed for future crewed missions.

XNAV sensors complement optical-navigation (OpNav) sensors. Together, they can serve as an autonomous navigation package to aid vehicles in case of loss of communications with the ground and to relieve the navigation tracking burden on NASA's Deep Space Network.

Mitchell said NASA's Lunar Orbital Platform-Gateway, where astronauts will participate in a variety of science, exploration, and commercial activities in orbit around and on the Moon, could employ XNAV capabilities.

CubeX: Characterizing the Lunar Surface
And in another development, the SEXTANT team is working with Suzanne Romaine, a scientist with the Smithsonian Astrophysical Observatory, and JaeSub Hong, a researcher with Harvard University, to fly XNAV on a CubeSat mission called CubeX.

"This is a push to move the technology into the operational mode," said Mitchell, who, along with Gendreau, is a CubeX collaborator.

"This is great opportunity for XNAV and showing its value to navigating in deep space."

As currently conceived, the small satellite would gather timing data from the list of SEXTANT millisecond pulsars using CubeX's miniature X-ray telescope. An onboard algorithm would then use the data to determine the spacecraft's trajectory. The team would compare CubeX's solution against that provided by NASA's Deep Space Network, a communications and navigational capability used by all NASA deep-space missions.

Demonstrating XNAV on an operational satellite, however, isn't the mission's only objective.

The other half of its mission will be spent measuring the composition of the Moon's lower crust and upper mantle to understand the origin and evolution of Earth's only natural satellite, which scientists believe may have formed when a huge collision tore off a chunk of Earth.

"There's a lot we don't know about the Moon. Many mysteries remain," said Hong. A better understanding of the mantle layer could be key to determining how the Moon and the Earth formed. To get this information, CubeX would use a technique called X-ray fluorescence, or XRF.

XRF, which is widely used in science and industry applications, is based on the principle that when individual atoms in sediment, rocks, and other materials are excited by an external energy source - in this case, X-rays emanating from the Sun - they emit their own X-rays that exhibit a characteristic energy or wavelength indicative of a specific element. This can be likened to how fingerprints can identify a specific person.

By capturing these "fluorescing" photons with a miniaturized X-ray optic and then analyzing them with an onboard spectrometer, scientists can discern which elements make up outcrops of the Moon's rocky mantle, which have been exposed by impact craters, and its crust, which overlays the mantle.

The mission would launch no earlier than 2023 to take advantage of the next solar maximum, which would assure a steady bombardment of high-energy X-rays to produce the fluorescence.

For more Goddard technology news, go here


Related Links
Technology at NASA
Microsat News and Nanosat News at SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


MICROSAT BLITZ
Arianespace to launch the first STRIVING small satellite for SITAEL on Vega's SSMS POC flight
Paris, France (SPX) May 04, 2018
Arianespace has been selected by SITAEL to launch the first small satellite for delivery of STRIVING services, to be conducted using a Vega as part of the launcher's Small Spacecraft Mission Service (SSMS) Proof of Concept (POC) flight. It is the third contract signed by Arianespace for this POC flight. The first STRIVING small satellite will be launched on Vega in 2019 from the Guiana Space Center, Europe's Spaceport in Kourou, French Guiana. STRIVING is a new one-stop-shop commercial servi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MICROSAT BLITZ
Tourism nearly a tenth of global CO2 emissions

Why plants are so sensitive to gravity: The lowdown

One detector doesn't 'fit all' for smoke in spacecraft

Rescue Operations Take Shape for Commercial Crew Program Astronauts

MICROSAT BLITZ
Reduce, Reuse, Rockets?

Return of SpaceX cargo ship delayed by rough seas

NASA Science to Return to Earth aboard SpaceX Dragon Spacecraft

China developing reusable space rocket

MICROSAT BLITZ
Early Mars may have been a warm desert with occasional rain

Microbes living in a toxic volcanic lake could hold clues to life on Mars

Results of Mars 2020 heat shield testing

Bernese Mars camera CaSSIS sends first colour images from Mars

MICROSAT BLITZ
Astronauts eye more cooperation on China's space station

China unveils underwater astronaut training suit

China to launch advanced space cargo transport aircraft in 2019

China's Chang'e-4 relay satellite named "Queqiao"

MICROSAT BLITZ
China's communication satellites occupy niche in world market

UK may set up satellite program separate from EU

ESA teams ready for space

Aerospace highlights lessons from Public-Private Partnerships in space

MICROSAT BLITZ
China rejects US military claims of laser attacks on pilots

AF plans to accelerate defendable space with Next-Gen OPIR

Can this invasive exotic pest make better materials for industry and medicine?

DARPA taps MIT for research on high-value molecules

MICROSAT BLITZ
Helium detected in exoplanet atmosphere for the first time

Researchers simulate conditions inside 'super-Earths'

Extreme Environment of Danakil Depression Sheds Light on Mars, Titan

Ultrahigh-pressure laser experiments shed light on super-Earth cores

MICROSAT BLITZ
Fresh results from NASA's Galileo spacecraft 20 years on

What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.