. 24/7 Space News .
TECH SPACE
Writing with the electron beam: Now in silver
by Staff Writers
Berlin, Germany (SPX) Jul 25, 2017


Scanning electron micrographs show a 10-micron planar deposition. The constituting silver crystals are about 100 nanometers in size. Credit HZB/ ACS Applied Materials and Interfaces (2017)

When it comes to extremely fine, precise features, a scanning electron microscope (SEM) is unrivaled. A focused electron beam can directly deposit complex features onto a substrate in a single step (Electron-Beam-Induced Deposition, EBID). While this is an established technique for gold, platinum, copper and further metals, direct electron beam writing of silver remained elusive.

Yet, the noble metal silver promises especially interesting potential applications in nano-optics in information technology. For the first time a team from the HZB and the Swiss Federal Laboratories for Materials Science and Technology (EMPA) has successfully realized the local deposition of silver nanocrystals by EBID. The results have now been published in the journal of the American Chemical Society's ACS Applied Materials Interfaces.

The chemistry of typical silver compounds is extremely challenging. They are difficult to evaporate and are highly reactive. During the heating in the injection unit, they tend to chemically react with the reservoir walls. Along their path from the reservoir to the tip of the needle, these compounds freeze again at the slightest drop in temperature and obstruct the tube.

"It took us a lot of time and effort to design a new injection unit and find a suitable silver compound", explains HZB physicist Dr. Katja Hoflich, who carried out the experiments as part of a Helmholtz Postdoctoral Fellowship at EMPA. "Finally, we managed it. The compound silver dimethylbutyrate remains stable and dissociates only in the focus of the electron beam." Hoflich and her colleagues used the EBID method to create sharply defined areas of tiny silver nanocrystals for the first time.

Writing with the electron beam
The principle works as follows: tiny amounts of a precursor substance - typically a metal-organic compound - are injected into the vacuum chamber of the SEM near the surface of the sample using a needle. Where the electron beam hits the sample surface, the precursor molecules dissociate and their non-volatile constituents are deposited in place. The electron beam can move like a pen over the substrate to create the desired features. For many precursor substances this works even in three dimensions.

Silver is a light concentrator
The fabricated silver nanostructures possess remarkable optical properties: visible light can excite the free electrons in the metal into oscillations referred to as plasmons. Plasmons are accompanied by an extreme lighting. Information about the composition of the surfaces can be obtained from the colour and intensity of this scattered light.

This effect can be utilised in Raman spectroscopy to detect the fingerprint of specific molecules that bind to the silver surface - down to the level of a single molecule. Hence, silver nanostructures are good candidates as sensors for explosives or other dangerous compounds.

A vision for the future: components for optical computing
Further applications are conceivable in future information technology: complex silver nanostructures may constitute the basis for purely optical information processing. To realize this, the process has to be refined, such that complex features can be directly written as already possible for other precursor compounds.

The results have now been published in ACS Applied Materials and Interfaces (2017): "Direct Electron Beam Writing of Silver-Based Nanostructures". Katja Hoflich, Jakub Jurczyk,Yucheng Zhang, Marcos V. Puydinger dos Santos,,Maximilian Gotz, Carlos Guerra-Nunez, James P. Best,Czeslaw Kapusta, and Ivo Utke.

TECH SPACE
Making telescopes that curve and twist
Los Angeles CA (SPX) Jul 24, 2017
A new tool for computational design allows users to turn any 3D shape into a collapsible telescoping structure. New mathematical methods developed by researchers at Carnegie Mellon University capture the complex and diverse properties of such structures, which are valuable for a variety of applications in 3D fabrication and robotics--particularly where mechanisms must be compact in size and easi ... read more

Related Links
Helmholtz-Zentrum Berlin fur Materialien und Energie
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA Offers Space Station as Catalyst for Discovery in Washington

Astronauts grow cucumbers in space to help scientists understand root growth

ULA to launch Dream Chaser for cargo runs to ISS for Sierra Nevada

Space Tourist From Asian Country to Travel to ISS in 2019

TECH SPACE
ISRO Develops Ship-Based Antenna System to Track Satellite Launches

Elon Musk says successful maiden flight for Falcon Heavy unlikely

Russia to Supply Largest Ever Number of Space Rocket Engines to US This Year

Aerojet Rocketdyne tests Advanced Electric Propulsion System

TECH SPACE
For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

Curiosity Mars Rover Begins Study of Ridge Destination

TECH SPACE
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

TECH SPACE
ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Iridium Poised to Make Global Maritime Distress and Safety System History

Korean Aerospace offices raided in anti-corruption probe

TECH SPACE
Writing with the electron beam: Now in silver

Scientists announce the quest for high-index materials

A new synthesis route for alternative catalysts of noble metals

Synthetic materials systems that can "count" and sense their size

TECH SPACE
A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star

Eyes Wide Open for MASCARA Exoplanet Hunter

TECH SPACE
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

NASA's New Horizons Team Strikes Gold in Argentina









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.