. 24/7 Space News .
CARBON WORLDS
World can likely capture and store enough carbon dioxide to meet climate targets
by Staff Writers
London, UK (SPX) May 22, 2020

illustration only

The capture and storage of carbon dioxide (CO2) underground is one of the key components of the Intergovernmental Panel on Climate Change's (IPCC) reports on how to keep global warming to less than 2C above pre-industrial levels by 2100.

Carbon capture and storage (CCS) would be used alongside other interventions such as renewable energy, energy efficiency, and electrification of the transportation sector.

The IPCC used models to create around 1,200 technology scenarios whereby climate change targets are met using a mix of these interventions, most of which require the use of CCS.

Now a new analysis from Imperial College London, published in Energy and Environmental Science, suggests that no more than 2,700 Gigatonnes (Gt) of carbon dioxide (CO2) would be sufficient to meet the IPCC's global warming targets. This is far less than leading estimates by academic and industry groups of what is available, which suggest there is more than 10,000 Gt of CO2 storage space globally.

It also found that that the current rate of growth in the installed capacity of CCS is on track to meet some of the targets identified in IPCC reports, but that research and commercial efforts should focus on maintaining this growth while identifying enough underground space to store this much CO2.

CCS involves trapping CO2 at its emission source, such as fossil-fuel power stations, and storing it underground to keep it from entering the atmosphere. Together with other climate change mitigation strategies, CCS could help the world reach the climate change mitigation goals set out by the IPCC.

However, until now the amount of storage needed has not been specifically quantified.

The study has shown for the first time that the maximum storage space needed is only around 2,700 Gt, but that this amount will grow if CCS deployment is delayed. The researchers worked this out by combining data on the past 20 years of growth in CCS, information on historical rates of growth in energy infrastructure, and models commonly used to monitor the depletion of natural resources.

The research team, led by Dr Christopher Zahasky at Imperial's Department of Earth Science and Engineering, found that worldwide, there has been 8.6 per cent growth in CCS capacity over the past 20 years, putting us on a trajectory to meet many climate change mitigation scenarios that include CCS as part of the mix.

Dr Zahasky, who is now an assistant professor at the University of Wisconsin-Madison but conducted the work at Imperial, said: "Nearly all IPCC pathways to limit warming to 2C require tens of gigatons of CO2 stored per year by mid-century. However, until now, we didn't know if these targets were achievable given historic data, or how these targets related to subsurface storage space requirements.

"We found that even the most ambitious scenarios are unlikely to need more than 2,700 Gt of CO2 storage resource globally, much less than the 10,000 Gt of storage resource that leading reports suggest is possible. Our study shows that if climate change targets are not met by 2100, it won't be for a lack of carbon capture and storage space."

Study co-author Dr Samuel Krevor, also from the Department of Earth Science and Engineering, said: "Rather than focus our attention on looking at how much storage space is available, we decided for the first time to evaluate how much subsurface storage resource is actually needed, and how quickly it must be developed, to meet climate change mitigation targets."

The researchers say that the rate at which CO2 is stored is important in its success in climate change mitigation. The faster CO2 is stored, the less total subsurface storage resource is needed to meet storage targets. This is because it becomes harder to find new reservoirs or make further use of existing reservoirs as they become full.

They found that storing faster and sooner than current deployment might be needed to help governments meet the most ambitious climate change mitigation scenarios identified by the IPCC.

The study also demonstrates how using growth models, a common tool in resource assessment, can help industry and governments to monitor short-term CCS deployment progress and long-term resource requirements.

However, the researchers point out that meeting CCS storage requirements will not be sufficient on its own to meet the IPCC climate change mitigation targets.

Dr Krevor said: "Our analysis shows good news for CCS if we keep up with this trajectory - but there are many other factors in mitigating climate change and its catastrophic effects, like using cleaner energy and transport as well as significantly increasing the efficiency of energy use."

+ IPCC reports available at here and here

Research Report: "Global geologic carbon storage requirements of climate change mitigation scenarios" by Christopher Zahasky and Samuel Krevor, published 21 May 2020 in Energy and Environmental Science.


Related Links
Imperial College London
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Artificial intelligence helps researchers up-cycle waste carbon
Toronto, Canada (SPX) May 14, 2020
Researchers at University of Toronto Engineering and Carnegie Mellon University are using artificial intelligence (AI) to accelerate progress in transforming waste carbon into a commercially valuable product with record efficiency. They leveraged AI to speed up the search for the key material in a new catalyst that converts carbon dioxide (CO2) into ethylene - a chemical precursor to a wide range of products, from plastics to dish detergent. The resulting electrocatalyst is the most efficien ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Searching with Sasquatch: Recovering Orion

Roscosmos confirms signing contract for NASA Astronaut's flight to ISS

JAXA HTV-9 spacecraft carries science, technology to ISS

Marshall team prepares for upcoming Commercial Crew Launch

CARBON WORLDS
Hypersonic Test Center for US Army speeds ahead

NASA takes preliminary steps to resume SLS Core Stage testing work

Australia Defence Dept signs agreement with Gold Coast space company

Pryer Aerospace signs long-term agreement with Blue Origin to support New Glenn Heavy-Lift Launch Vehicle

CARBON WORLDS
ExoMars rover upgrades and parachute tests

The horst and graben landscape of Ascuris Planum

Sculpted by nature on Mars

Rover avoids sand traps with 'rear rotator pedaling'

CARBON WORLDS
China's tracking ship Yuanwang-5 back from rocket monitoring mission

China's Kuaizhou rocket industrial park partially operational

China's experimental new-generation manned spaceship works normally in orbit

Long March-5B rocket enables China to construct space station

CARBON WORLDS
RUAG Space offers new electronics for constellations

Intelsat files for bankruptcy, seeks to restructure

Bankrupt OneWeb seeks DoD financing to keep assets from Chinese purchase

ESA Startup competition: next steps

CARBON WORLDS
Machine-learning tool could help develop tougher materials

Amazon puts heat on eSports giants with 'Crucible'

Emissions from road construction could be halved using today's technology

Self-repairing rubber made from waste ideal for variety of uses

CARBON WORLDS
TRAPPIST-1 planetary orbits not misaligned

Amsterdam researchers observe iron in exoplanetary atmosphere

Scientists reveal solar system's oldest molecular fluids could hold the key to early life

New 'planetary quarantine' report reviewing risks of alien contamination

CARBON WORLDS
SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.