. 24/7 Space News .
TECH SPACE
Machine-learning tool could help develop tougher materials
by David L. Chandler for MIT News
Boston MA (SPX) May 21, 2020

The researchers ran hundreds of atom-by-atom simulations of the propagation of cracks through different kinds of layered material, to see which ones were most effective at stopping the cracks from making it all the way through the material. Shown here are a variety of simulation runs showing different outcomes.

For engineers developing new materials or protective coatings, there are billions of different possibilities to sort through. Lab tests or even detailed computer simulations to determine their exact properties, such as toughness, can take hours, days, or more for each variation. Now, a new artificial intelligence-based approach developed at MIT could reduce that to a matter of milliseconds, making it practical to screen vast arrays of candidate materials.

The system, which MIT researchers hope could be used to develop stronger protective coatings or structural materials - for example, to protect aircraft or spacecraft from impacts - is described in a paper in the journal Matter, by MIT postdoc Chi-Hua Yu, civil and environmental engineering professor and department head Markus J. Buehler, and Yu-Chuan Hsu at the National Taiwan University.

The focus of this work was on predicting the way a material would break or fracture, by analyzing the propagation of cracks through the material's molecular structure. Buehler and his colleagues have spent many years studying fractures and other failure modes in great detail, since understanding failure processes is key to developing robust, reliable materials. "One of the specialties of my lab is to use what we call molecular dynamics simulations, or basically atom-by-atom simulations" of such processes, Buehler says.

These simulations provide a chemically accurate description of how fracturing happens, he says. But it's slow, because it requires solving equations of motion for every single atom. "It takes a lot of time to simulate these processes," he says. The team decided to explore ways of streamlining that process, using a machine-learning system.

"We're kind of taking a detour," he says. "We've been asking, what if you had just the observation of how fracturing happens [in a given material], and let computers learn this relationship itself?" To do that, artificial intelligence (AI) systems need a variety of examples to use as a training set, to learn about the correlations between the material's characteristics and its performance.

In this case, they were looking at a variety of composite, layered coatings made of crystalline materials. The variables included the composition of the layers and the relative orientations of their orderly crystal structures, and the way those materials each responded to fracturing, based on the molecular dynamics simulations. "We basically simulate, atom by atom, how materials break, and we record that information," Buehler says.

They painstakingly generated hundreds of such simulations, with a wide variety of structures, and subjected each one to many different simulated fractures. Then they fed large amounts of data about all these simulations into their AI system, to see if it could discover the underlying physical principles and predict the performance of a new material that was not part of the training set.

And it did. "That's the really exciting thing," Buehler says, "because the computer simulation through AI can do what normally takes a very long time using molecular dynamics, or using finite element simulations, which are another way that engineers solve this problem, and it's very slow as well. So, this is a whole new way of simulating how materials fail."

How materials fail is crucial information for any engineering project, Buehler emphasizes. Materials failures such as fractures are "one of the biggest reasons for losses in any industry. For inspecting planes or trains or cars, or for roads or infrastructure, or concrete, or steel corrosion, or to understand the fracture of biological tissues such as bone, the ability to simulate fracturing with AI, and doing that quickly and very efficiently, is a real game changer."

The improvement in speed produced by using this method is remarkable. Hsu explains that "for single simulations in molecular dynamics, it has taken several hours to run the simulations, but in this artificial intelligence prediction, it only takes 10 milliseconds to go through all the predictions from the patterns, and show how a crack forms step by step."

The method they developed is quite generalizable, Buehler says. "Even though in our paper we only applied it to one material with different crystal orientations, you can apply this methodology to much more complex materials." And while they used data from atomistic simulations, the system could also be used to make predictions on the basis of experimental data such as images of a material undergoing fracturing.

"If we had a new material that we've never simulated before," he says, "if we have a lot of images of the fracturing process, we can feed that data into the machine-learning model as well." Whatever the input, simulated or experimental, the AI system essentially goes through the evolving process frame by frame, noting how each image differs from the one before in order to learn the underlying dynamics.

For example, as researchers make use of the new facilities in MIT.nano, the Institute's facility dedicated to fabricating and testing materials at the nanoscale, vast amounts of new data about a variety of synthesized materials will be generated.

"As we have more and more high-throughput experimental techniques that can produce a lot of images very quickly, in an automated way, these kind of data sources can immediately be fed into the machine-learning model," Buehler says. "We really think that the future will be one where we have a lot more integration between experiment and simulation, much more than we have in the past."

The system could be applied not just to fracturing, as the team did in this initial demonstration, but to a wide variety of processes unfolding over time, he says, such as diffusion of one material into another, or corrosion processes. "Anytime where you have evolutions of physical fields, and we want to know how these fields evolve as a function of the microstructure," he says, this method could be a boon.


Related Links
MIT News Office
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Scientists use pressure to make liquid magnetism breakthrough
Lemont IL (SPX) May 19, 2020
It sounds like a riddle: What do you get if you take two small diamonds, put a small magnetic crystal between them and squeeze them together very slowly? The answer is a magnetic liquid, which seems counterintuitive. Liquids become solids under pressure, but not generally the other way around. But this unusual pivotal discovery, unveiled by a team of researchers working at the Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Argonne National ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Roscosmos confirms signing contract for NASA Astronaut's flight to ISS

JAXA HTV-9 spacecraft carries science, technology to ISS

Marshall team prepares for upcoming Commercial Crew Launch

Spacesuit for the ground

TECH SPACE
NASA takes preliminary steps to resume SLS Core Stage testing work

Australia Defence Dept signs agreement with Gold Coast space company

Soyuz-7 for Sea Launch to be equipped with new Fregat-SBU Upper Stage

Bipartisan space launch legislation introduced

TECH SPACE
Sculpted by nature on Mars

Rover avoids sand traps with 'rear rotator pedaling'

Researchers simulate the core of Mars to investigate its composition and origin

Study suggests terrestrial life unlikely to contaminate Mars

TECH SPACE
China's tracking ship Yuanwang-5 back from rocket monitoring mission

China's Kuaizhou rocket industrial park partially operational

China's experimental new-generation manned spaceship works normally in orbit

Long March-5B rocket enables China to construct space station

TECH SPACE
ESA Startup competition: next steps

Blackjack focuses on risk reduction flights and simulations

Airbus supplies EU with satellite communications

Inmarsat launches solution for the rail industry

TECH SPACE
Ultra-long-working-distance spectroscopy with 3D-printed aspherical microlenses

New algorithm predicts optimal materials among all possible compounds

Emissions from road construction could be halved using today's technology

Self-repairing rubber made from waste ideal for variety of uses

TECH SPACE
TRAPPIST-1 planetary orbits not misaligned

Amsterdam researchers observe iron in exoplanetary atmosphere

Scientists reveal solar system's oldest molecular fluids could hold the key to early life

New 'planetary quarantine' report reviewing risks of alien contamination

TECH SPACE
SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.