. | . |
Why sending humans to Venus is a brilliant idea by Gareth Dorrian and Ian Whittaker for The Conversation UK Nottingham UK (The Conversation) Oct 17, 2018
Popular science fiction of the early 20th century depicted Venus as some kind of wonderland of pleasantly warm temperatures, forests, swamps and even dinosaurs. In 1950, the Hayden Planetarium at the American Natural History Museum were soliciting reservations for the first space tourism mission, well before the modern era of Blue Origins, SpaceX and Virgin Galactic. All you had to do was supply your address and tick the box for your preferred destination, which included Venus. Today, Venus is unlikely to be a dream destination for aspiring space tourists. As revealed by numerous missions in the last few decades, rather than being a paradise, the planet is a hellish world of infernal temperatures, a corrosive toxic atmosphere and crushing pressures at the surface. Despite this, NASA is currently working on a conceptual manned mission to Venus, named the High Altitude Venus Operational Concept - (HAVOC). But how is such a mission even possible? Temperatures on the planet's surface (about 460C) are in fact hotter than Mercury, even though Venus is roughly double the distance from the sun. This is higher than the melting point of many metals including bismuth and lead, which may even fall as "snow" onto the higher mountain peaks. The surface is a barren rocky landscape consisting of vast plains of basaltic rock dotted with volcanic features, and several continent-scale mountainous regions. It is also geologically young, having undergone catastrophic resurfacing events. Such extreme events are caused by the build up of heat below the surface, eventually causing it to melt, release heat and re-solidify. Certainly a scary prospect for any visitors.
Hovering in the atmosphere This mission is a long term plan and will rely on small test missions to be successful first. Such a mission is actually possible, right now, with current technology. The plan is to use airships which can stay aloft in the upper atmosphere for extended periods of time. As surprising as it may seem, the upper atmosphere of Venus is the most Earth-like location in the solar system. Between altitudes of 50km and 60km, the pressure and temperature can be compared to regions of the Earth's lower atmosphere. The atmospheric pressure in the Venusian atmosphere at 55km is about half that of the pressure at sea level on Earth. In fact you would be fine without a pressure suit, as this is roughly equivalent to the air pressure you would encounter at the summit of Mount Kilimanjaro. Nor would you need to insulate yourself as the temperature here ranges between 20C and 30C. The atmosphere above this altitude is also dense enough to protect astronauts from ionising radiation from space. The closer proximity of the sun provides an even greater abundance of available solar radiation than on Earth, which can be used to generate power (approximately 1.4 times greater). The conceptual airship would float around the planet, being blown by the wind. It could, usefully, be filled with a breathable gas mixture such as oxygen and nitrogen, providing buoyancy. This is possible because breathable air is less dense than the Venusian atmosphere and, as result, would be a lifting gas. The Venusian atmosphere is comprised of 97% carbon dioxide, about 3% nitrogen and trace amounts of other gases. It famously contains a sprinkling of sulphuric acid which forms dense clouds and is a major contributor to its visible brightness when viewed from Earth. In fact the planet reflects some 75% of the light that falls onto it from the sun. This highly reflective cloud layer exists between 45km and 65km, with a haze of sulphuric acid droplets underneath down to about 30km. As such, an airship design would need to be resistant to the corrosive effect of this acid. Luckily we already have the technology required to overcome the problem of acidity. Several commercially available materials, including teflon and a number of plastics, have a high acidic resistance and could be used for the outer envelope of the airship. Considering all these factors, conceivably you could go for a walk on a platform outside the airship, carrying only your air supply and wearing a chemical hazard suit.
Life on Venus? The current climatic conditions and composition of the atmosphere are the result of a runaway greenhouse effect (an extreme greenhouse effect that cannot be reversed), which transformed the planet from a hospitable Earth-like "twin" world in its early history. While we do not currently expect Earth to undergo a similarly extreme scenario, it does demonstrate that dramatic changes to a planetary climate can happen when certain physical conditions arise. By testing our current climate models using the extremes seen on Venus we can more accurately determine how various climate forcing effects can lead to dramatic changes. Venus therefore provides us with a means to test the extremes of our current climate modelling, with all the inherent implications for the ecological health of our own planet. We still know relatively little about Venus, despite it being our nearest planetary neighbour. Ultimately, learning how two very similar planets can have such different pasts will help us understand the evolution of the solar system and perhaps even that of other star systems.
'After Venus We Can't Exclude Possibility of Other Planets Hosting Life' Washington DC (Sputnik) Apr 19, 2018 Scientists led by Sanjay Limaye have found out that the atmosphere of Venus could be host to extraterrestrial life. The authors noted that the moderate temperatures and pressures, along with the chemical makeup of the planet's clouds could establish an environment necessary to sustain life. Sputnik spoke to Professor Sanjay Limaye about it. b>Sputnik: /b>Can you tell us in more detail how you noticed the dark patches in the clouds? b>Sanjay Limaye*: /b>The patches actually have been know ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |