. 24/7 Space News .
Why sailing to the stars has suddenly become a realistic goal
by Monica Grady for The Conversation
London, UK (The Conversation) Apr 18, 2016

Artist's view of an experimental solar sail satellite built by NASA, dubbed NanoSail-D2. Image courtesy NASA.

It takes a bold person to declare that interstellar travel is now within our grasp. Physicist Stephen Hawking has shown that he is just that, taking part in the Breakthrough Starshot initiative. The project has announced a $100m research programme to investigate the technology of using light to propel spacecraft out of the solar system to explore neighbouring stars.

For the first time in human history, interstellar travel is a realistic and achievable aspiration, and not just the playground of science fiction.

So what has changed that makes interstellar travel achievable? First of all, clear expectations. This is not about a great big spaceship with a colony of astronauts travelling for generations to settle a planet around a distant star. Neither is it about faster-than-light travel, tunnelling through wormholes to arrive at the other side of the universe in an instant of time. This is about technology that already exists, or nearly exists, being applied in new and exciting ways.

The technology is that of solar sails combined with the ability to miniaturise instruments. The idea behind solar sails is that the light that streams from the sun can be used to propel an object. Gradually, as the object is moved, it accelerates and builds up speed, eventually reaching values that are a significant fraction of the speed of light.

So far, tests have been made on sails that are many metres across, carrying payloads of kilograms in weight. And the technology works - both the European Space Agency and NASA have developed systems that could be applied to spacecraft. To work efficiently, these sails need to be several metres across, just as a sail on a sea-going vessel needs to be a certain size to catch enough wind to push a ship forward.

Miniaturisation of instruments has been a significant driver of space exploration ever since the launch of Sputnik, the first artificial satellite to orbit the Earth. The ideal instrument for a space mission has minimal mass and requires minimal power. These requirements led to the concept of CubeSat, a tiny satellite where a standard platform has been developed onto which different instruments could be fitted. The entire satellite can also be launched by a variety of different vehicles.

We can all appreciate the rate at which equipment is getting ever smaller - a quick glance at a smart phone, with its powerful camera, ability to record and store gigabytes-worth of sound and images shows where technology sits at the moment. There have been proposals to use a CubeSat to launch multiple tiny probes carrying instruments to the moon and to Mars. Breakthrough Starshot, though, will be a single microchip - a spacechip that is a spaceship (and vice versa!).

The concept is to have individual microchips each propelled by a solar sail. Given that the sail is likely to be much, much bigger than the vessel - the spacechip is likely to be of the order of a centimetre long - there are practical as well as technological difficulties to overcome. But attaching the sail to the ship is probably one of the least serious potential problems.

Interstellar threats
Interplanetary and interstellar space are full of hazards for a tiny traveller. The two greatest hazards will be dust and radiation. Even though there have been great advances in production of thin but strong materials that would make appropriate solar sails, a dust grain travelling at speed could rip a sail apart. Also, microchips are very sensitive to high doses of radiation - and interstellar space is shot through by cosmic rays. While the chips are still within the solar system, how vulnerable will they be to changes in the solar wind?

Once all the technological development has taken place, and the chips are launched - which might be sooner rather than later, if the Breakthrough Starshot initiative is successful - where will they go and what will they do when they get there? The idea is that they will travel to our nearest neighbour beyond our Solar System, Alpha Centauri, taking about 20 years to get there, travelling at a speed of about 60,000 km per second (or 135m miles per hour).

This is not just an amazingly short time to travel a distance of 40 trillion km, it is also a reasonable length of time for a space mission to last - think of how long the Hubble Space Telescope has been operating and returning spectacular images. En route for Alpha Centauri, the chips will act as tourists - taking pictures, meeting the local inhabitants (planets? comets?), and looking at the scenery (such as more distant stars).

These findings in themselves are probably sufficient scientific justification for the project. For example, we have never seen a star or a supernova from interstellar space - we are always looking through the lens of the solar system. Once the tiny travellers reach Alpha Centauri, the instruments will make measurements of a stellar system, giving us - again for the first time - a detailed insight into stars that are different from our own. They might even find planets and moons.

We've had talk of surfing on gravitational waves to travel in time - which is still very much science fiction. Now, though, we are sailing in a solar wind, and interstellar travel is within our grasp. We might not yet be at the stage of interstellar travel for people, but being able to see what it is like to travel through interstellar space while still in the comfort of our own home is certainly a first step.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Breakthrough Starshot initiative
Space Technology News - Applications and Research

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
Upgrade to offer power boost to world's brightest X-ray laser
Menlo Park, Calif. (UPI) Apr 5, 2016
The X-ray laser at the Department of Energy's SLAC National Accelerator Laboratory is getting a second laser beam, this one 10,000 times brighter than the first. At a million pulses per second, the new beam will also be able to fire 8,000 times faster. The upgrade project is called LCLS-II, and is expected to offer a tremendous power boost to the SLAC's Linac Coherent Light Source. ... read more

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

The Moon thought to play a major role in maintaining Earth's magnetic field

Rover mini-walkabout to find clay mineral continues

First light for ExoMars

Russia, Italy plan first bid to explore beneath mars surface in 2018

First joint EU-Russian ExoMars mission to reach Mars orbit Oct 16

NASA blasts Orion Service Module with giant horns

Mobile phone technology propels Starshot's ET space search

Concept's success buoys Commercial Crew's path to flight

A US Department of Space

Chinese scientists develop mammal embryos in space for first time

China begins testing Tiangong-2 space lab

Lessons learned from Tiangong 1

China launches SJ-10 retrievable space science probe

15 years of Europe on the International Space Station

BEAM successfully installed to the International Space Station

NASA to test first expandable habitat on ISS

Dragon and Cygnus To Meet For First Time In Space

Arianespace cooperation with Russia remains smooth amid sanctions

Orbital ATK awarded major sounding rocket contract by NASA

SpaceX lands rocket on ocean platform for first time

SpaceX cargo arrives at crowded space station

University of Massachusetts Lowell PICTURE-B Mission Completed

Lone planetary-mass object found in family of stars

Stars strip away atmospheres of nearby super-Earths

1917 astronomical plate has first-ever evidence of exoplanetary system

Students observe damaged Hitomi X-ray satellite and debris

Why sailing to the stars has suddenly become a realistic goal

Strathclyde-led project to open up space technology to new nations

Progress of simulating dynamics in heterogeneous materials

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.