. | . |
Which will survive? A microorganism zoo in the stratosphere by Staff Writers Cologne, Germany (SPX) Jan 26, 2020
In September 2019, astrobiologists from the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) sent an entire 'zoo' of microorganisms, such as bacteria and moulds, on a nine-hour journey up to 30 kilometres above Earth. They travelled under a stratospheric balloon operated by the US space agency NASA for the 'Microbes in Atmosphere for Radiation, Survival and Biological Outcomes Experiment' (MARSBOx). At this altitude, the protective effects of Earth's atmosphere are greatly reduced, and the temperature, radiation and pressure are similar to the conditions found on Mars. The DLR team has been analysing the MARSBOx samples over the last few weeks and the preliminary biological findings are now available. These show that most of the bacteria have been killed, with the strong ultraviolet radiation proving to be particularly problematic for them. Only a few staphylococci - human pathogens - survived the journey. In contrast, mould spores survived better under the extreme conditions in the stratosphere. "Research has been conducted into bacteria in space since the Apollo missions. Fungi are also considered to be space-relevant organisms. However, research into them is only in its very early stages," says Ralf Moller, a microbiologist at the DLR Institute of Aerospace Medicine in Cologne. His team collaborated with NASA's Ames Research Center on the stratospheric flight, affording them the opportunity to fly a sample holder easily and inexpensively. Many of the bacteria and fungi were tested at high altitude for the first time. Moller has an explanation for the greater resistance of moulds to these extreme atmospheric conditions: "In order to proliferate, moulds form spores that are highly resistant to extreme conditions such as dryness and radiation. In addition, fungi have very efficient protective mechanisms against radiation, such as strong black pigmentation and effective DNA repair. "Although many bacteria have similar properties, the mould spores are much more resistant to the extreme Martian conditions than the bacteria that we tested. The results demonstrate how important it is to continue with research into microorganisms, particularly fungi, and their survival properties in space - not least in the interests of the health of astronauts on long-term missions to space stations, and later to habitats on the Moon and Mars." Microorganisms - a challenge for space travel Bacteria and fungi are part of nature and human life. Whether they live on the outside of our bodies - on our skin - or inside us, many species are harmless, and some are even useful. But there are also varieties that can be dangerous to humans and cause serious diseases. These pose invisible dangers to space travellers on space stations or on future journeys to outposts on other planets. The matter of 'planetary protection' must also be considered. If landers, rovers or other space vehicles carrying bacteria or fungi set down on planets and celestial bodies, they could contaminate the surface. Research into microorganisms under space conditions is ongoing. As early as summer 2020, samples for a major test campaign will be transported to the International Space Station (ISS) to investigate how they are affected by microgravity conditions in the short and long term.
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |