24/7 Space News
STELLAR CHEMISTRY
Webb reveals that galaxy mergers are the solution to early Universe mystery
A graphic with three images. The top image, labelled "CEERS survey", shows many square images of stars and galaxies, stitched together according to their locations in the sky. One square is highlighted, and a cutout on the bottom left shows it enlarged, labelled "Webb/ NIRCam". A tiny spot is shown zoomed-in to the right, labelled "EGSY8p7" with a scale marker of "0.5 arcsec". Here it can be seen that the spot is three neighbouring galaxies, appearing as coloured blobs with bright, distinct cores.
ADVERTISEMENT
The 2024 Humans To Mars Summit - May 07-08, 2024 - Washington D.C.
Webb reveals that galaxy mergers are the solution to early Universe mystery
by Staff Writers at ESA
Paris (ESA) Jan 19, 2024

One of the key missions of the NASA/ESA/CSA James Webb Space Telescope is to probe the early Universe. Now, the unmatched resolution and sensitivity of Webb's NIRCam instrument have revealed, for the first time, what lies in the local environment of galaxies in the very early Universe. This has solved one of the most puzzling mysteries in astronomy - why astronomers detect light from hydrogen atoms which should have been entirely blocked by the pristine gas that formed after the Big-Bang.

These new Webb observations have found small, faint objects surrounding the very galaxies that show the 'inexplicable' hydrogen emission. In conjunction with state-of-the-art simulations of galaxies in the early Universe, the observations have shown that the chaotic merging of these neighbouring galaxies is the source of this hydrogen emission.

Light travels at a finite speed (300 000 kilometres per second), which means that the further away a galaxy is, the longer it has taken the light from it to reach our Solar System. As a result, not only do observations of the most distant galaxies probe the far reaches of the Universe, but they also allow us to study the Universe as it was in the past.

In order to study the very early Universe, astronomers require exceptionally powerful telescopes that are capable of observing very distant - and therefore very faint - galaxies. One of Webb's key capabilities is its ability to observe those very distant galaxies, and hence to probe the early history of the Universe. An international team of astronomers have put Webb's amazing capacity to excellent use in solving a long-standing mystery in astronomy.

The very earliest galaxies were sites of vigorous and active star formation, and as such were rich sources of a type of light emitted by hydrogen atoms called Lyman-a emission. However, during the epoch of reionisation an immense amount of neutral hydrogen gas surrounded these areas of active star formation (also known as stellar nurseries). Furthermore, the space between galaxies was filled by more of this neutral gas than is the case today.

The gas can very effectively absorb and scatter this kind of hydrogen emission, so astronomers have long predicted that the abundant Lyman-a emission released in the very early Universe should not be observable today. This theory has not always stood up to scrutiny, however, as examples of very early hydrogen emission have previously been observed by astronomers. This has presented a mystery: how is it that this hydrogen emission - that should have long since been absorbed or scattered - is being observed? Researcher at the University of Cambridge and principal investigator on the new study Callum Witten elaborates:

"One of the most puzzling issues that previous observations presented was the detection of light from hydrogen atoms in the very early Universe, which should have been entirely blocked by the pristine neutral gas that was formed after the Big-Bang. Many hypotheses have previously been suggested to explain the great escape of this 'inexplicable' emission."

The team's breakthrough came thanks to Webb's extraordinary combination of angular resolution and sensitivity. The observations with Webb's NIRCam instrument were able to resolve smaller, fainter galaxies that surround the bright galaxies from which the 'inexplicable' hydrogen emission had been detected.

In other words, the surroundings of these galaxies appear to be a much busier place than we previously thought, filled with small, faint galaxies. Crucially, these smaller galaxies were interacting and merging with one another, and Webb has revealed that galaxy mergers play an important role in explaining the mystery emission from the earliest galaxies. Sergio Martin-Alvarez, team member from Stanford University, adds:

"Where Hubble was seeing only a large galaxy, Webb sees a cluster of smaller interacting galaxies, and this revelation has had a huge impact on our understanding of the unexpected hydrogen emission from some of the first galaxies."

The team then used state-of-the-art computer simulations to explore the physical processes that might explain their results. They found that the rapid build-up of stellar mass through galaxy mergers both drove strong hydrogen emission and facilitated the escape of that radiation via channels cleared of the abundant neutral gas. So the high merger rate of the previously unobserved smaller galaxies presented a compelling solution to the long-standing puzzle of the 'inexplicable' early hydrogen emission.

The team are planning follow up observations with galaxies at various stages of merging, in order to continue to develop their understanding of how the hydrogen emission is ejected from these changing systems. Ultimately, this will enable them to improve our understanding of galaxy evolution.

Full Caption:
This image shows the galaxy EGSY8p7, a bright galaxy in the early Universe where light emission is seen from, among other things, excited hydrogen atoms - Lyman-a emission. The galaxy was identified in a field of young galaxies studied by Webb in the CEERS survey. In the bottom two panels, Webb's high sensitivity picks out this distant galaxy along with its two companion galaxies, where previous observations saw only one larger galaxy in its place.

This discovery of a cluster of interacting galaxies sheds light on the mystery of why the hydrogen emission from EGSY8p7, shrouded in neutral gas formed after the Big Bang, should be visible at all. Astronomers have concluded that the intense star-forming activity within these interacting galaxies energised hydrogen emission and cleared swathes of gas from their surroundings, allowing the unexpected hydrogen emission to escape.

This graphic is assembled from multiple images captured by Webb's NIRCam instrument as part of the CEERS survey. The close-up view of EGSY8p7 was newly processed for this image, making use of NIRCam data captured with seven different near-infrared filters.

Credit: ESA/Webb, NASA and CSA, S. Finkelstein (UT Austin), M. Bagley (UT Austin), R. Larson (UT Austin), A. Pagan (STScI), C. Witten, M. Zamani (ESA/Webb)

Research Report:Deciphering Lyman-a emission deep into the epoch of reionization

Related Links
Webb at ESA
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
NASA's IXPE Helps Researchers Maximize 'Microquasar' Findings
Greenbelt MD (SPX) Jan 17, 2024
The powerful gravity fields of black holes can devour whole planets' worth of matter - often so violently that they expel streams of particles traveling near the speed of light in formations known as jets. Scientists understand that these high-speed jets can accelerate these particles, called cosmic rays, but little is definitively known about that process. Recent findings by researchers using data from NASA's IXPE (Imaging X-ray Polarimetry Explorer) spacecraft give scientists new clues as to how ... read more

ADVERTISEMENT
ADVERTISEMENT
STELLAR CHEMISTRY
NASA, Partners to welcome private crew aboard Space Station

SpaceX and ESA collaborate on ISS mission featuring advanced german science experiments

Turkey's first astronaut set to boost Erdogan's ambitions

First European takes off on commercial flight to Space Station

STELLAR CHEMISTRY
Mexico Set for Space Sector Boost with New National Rocket and Space Center by Merida Aerospace

European crew poised for private mission to International Space Station

Axiom launches third mission to ISS, carrying European space hopes

SpaceX completes second launch Sunday, sends more satellites into orbit

STELLAR CHEMISTRY
Sols 4066-4070: Cracking Up

Mars Express unveils potential water resource for future Mars missions at equator

Buried water ice at Mars's equator?

So Many Textures, So Little Time: Sols 4070-4072

STELLAR CHEMISTRY
Yan Hongsen's future dreams as 'Rocket Boy'

China's Tianzhou 7 docks with Tiangong Space Station

China Prepares to Launch Tianzhou 7 Cargo Ship to Tiangong Space Station

Tianzhou 7 mission set to enhance operations at China's Tiangong Space Station

STELLAR CHEMISTRY
Momentus secures $4M through direct stock offering to institutional investor

Sidus Space Partners with ASPINA for Satellite Technology Demonstration on LizzieSat Mission

AST SpaceMobile Launches $100 Million Stock Offering Amid Strategic Tech Investments

MEASAT Partners with SpaceX as Official Reseller for Starlink Services in Key Markets

STELLAR CHEMISTRY
NASA's Transition to Commercial Space Networks: A Leap in Wideband Communication

Laser Instrument on NASA's LRO Successfully 'Pings' Indian Moon Lander

Intercontinental team to grow protein crystals in space

ESA advances satellite testing capabilities at Europe's largest thermal vacuum facility

STELLAR CHEMISTRY
ASU talk will examine ethical questions surrounding life in space

Key moment in the evolution of life on Earth captured in fossils

Study uncovers potential origins of life in ancient hot springs

Earth-sized planet discovered in 'our solar backyard'

STELLAR CHEMISTRY
New images reveal what Neptune and Uranus really look like

Researchers reveal true colors of Neptune, Uranus

The PI's Perspective: The Long Game

Webb rings in the holidays with the ringed planet Uranus

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.