24/7 Space News
EXO WORLDS
Webb looks for Fomalhaut's asteroid belt and finds much more
This image of the dusty debris disk surrounding the young star Fomalhaut is from Webb's Mid-Infrared Instrument (MIRI). It reveals three nested belts extending out to 14 billion miles (23 billion kilometers) from the star. The inner belts - which had never been seen before - were revealed by Webb for the first time. Labels at left indicate the individual features. At right, a great dust cloud is highlighted and pullouts show it in two infrared wavelengths: 23 and 25.5 microns. Credits: NASA, ESA, CSA, A. Gaspar (University of Arizona). Image processing: A. Pagan (STScI)
ADVERTISEMENT
     
Webb looks for Fomalhaut's asteroid belt and finds much more
by Staff Writers
Baltimore MD (SPX) May 09, 2023

The belts encircle the young hot star, which can be seen with the naked eye as the brightest star in the southern constellation Piscis Austrinus. The dusty belts are the debris from collisions of larger bodies, analogous to asteroids and comets, and are frequently described as 'debris disks.' "I would describe Fomalhaut as the archetype of debris disks found elsewhere in our galaxy, because it has components similar to those we have in our own planetary system," said Andras Gaspar of the University of Arizona in Tucson and lead author of a new paper describing these results. "By looking at the patterns in these rings, we can actually start to make a little sketch of what a planetary system ought to look like - If we could actually take a deep enough picture to see the suspected planets."

The Hubble Space Telescope and Herschel Space Observatory, as well as the Atacama Large Millimeter/submillimeter Array (ALMA), have previously taken sharp images of the outermost belt. However, none of them found any structure interior to it. The inner belts have been resolved for the first time by Webb in infrared light. "Where Webb really excels is that we're able to physically resolve the thermal glow from dust in those inner regions. So you can see inner belts that we could never see before," said Schuyler Wolff, another member of the team at the University of Arizona.

Hubble, ALMA, and Webb are tag-teaming to assemble a holistic view of the debris disks around a number of stars. "With Hubble and ALMA, we were able to image a bunch of Kuiper Belt analogs, and we've learned loads about how outer disks form and evolve," said Wolff. "But we need Webb to allow us to image a dozen or so asteroid belts elsewhere. We can learn just as much about the inner warm regions of these disks as Hubble and ALMA taught us about the colder outer regions."

These belts most likely are carved by the gravitational forces produced by unseen planets. Similarly, inside our solar system Jupiter corrals the asteroid belt, the inner edge of the Kuiper Belt is sculpted by Neptune, and the outer edge could be shepherded by as-yet-unseen bodies beyond it. As Webb images more systems, we will learn about the configurations of their planets.

Fomalhaut's dust ring was discovered in 1983 in observations made by NASA's Infrared Astronomical Satellite (IRAS). The existence of the ring has also been inferred from previous and longer-wavelength observations using submillimeter telescopes on Mauna Kea, Hawaii, NASA's Spitzer Space Telescope, and Caltech's Submillimeter Observatory.

"The belts around Fomalhaut are kind of a mystery novel: Where are the planets?" said George Rieke, another team member and U.S. science lead for Webb's Mid-Infrared Instrument (MIRI), which made these observations. "I think it's not a very big leap to say there's probably a really interesting planetary system around the star."

"We definitely didn't expect the more complex structure with the second intermediate belt and then the broader asteroid belt," added Wolff. "That structure is very exciting because any time an astronomer sees a gap and rings in a disk, they say, 'There could be an embedded planet shaping the rings!'"

Webb also imaged what Gaspar dubs "the great dust cloud," which may be evidence for a collision occurring in the outer ring between two protoplanetary bodies. This is a different feature from a suspected planet first seen inside the outer ring by Hubble in 2008. Subsequent Hubble observations showed that by 2014 the object had vanished. A plausible interpretation is that this newly discovered feature, like the earlier one, is an expanding cloud of very fine dust particles from two icy bodies that smashed into each other.

The idea of a protoplanetary disk around a star goes back to the late 1700s when astronomers Immanuel Kant and Pierre-Simon Laplace independently developed the theory that the Sun and planets formed from a rotating gas cloud that collapsed and flattened due to gravity. Debris disks develop later, following the formation of planets and dispersal of the primordial gas in the systems. They show that small bodies like asteroids are colliding catastrophically and pulverizing their surfaces into huge clouds of dust and other debris. Observations of their dust provide unique clues to the structure of an exoplanetary system, reaching down to earth-sized planets and even asteroids, which are much too small to see individually.

The team's results are being published in the journal Nature Astronomy.

Research Report:Spatially resolved imaging of the inner Fomalhaut disk using JWST/MIRI

Related Links
Webb at NASA
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EXO WORLDS
Hubble follows shadow play around planet-forming disk
Baltimore MD (SPX) May 05, 2023
Our universe is so capricious it sometimes likes to play a game of hide and seek. In 2017, astronomers were surprised to see a huge shadow sweeping across a disk of dust and gas encircling the nearby young star TW Hydrae. The shadow is cast by an inner disk of dust and gas that is slightly tilted to the plane of the outer disk. The shadow can only be clearly seen because the system is tilted face-on to Earth, giving astronomers a bird's-eye view of the disk as the shadow sweeps around the disk like a ha ... read more

ADVERTISEMENT
ADVERTISEMENT
EXO WORLDS
Cosmonauts wrap up 5-hour ISS spacewalk

SpaceX set to launch Vast's commercial space station and inaugural human spaceflight mission

NASA launches SBIR Ignite Catalyst Program for founders and entrepreneurs

Virgin to launch commercial spaceflights in June

EXO WORLDS
Wenchang Spacecraft Launch Site can launch new-generation rockets

New standard will aid in development of spaceport descriptions

China's reusable experimental spacecraft successfully lands

Rocket Lab to launch small satellite swarm for NASA

EXO WORLDS
Ubajara drill site gets green light: Sols 3823-3824

These sounds are out of this world

Chasms on the flanks of a Martian volcano

Another beautiful hole on Mars: Sols 3825-3826

EXO WORLDS
China's cargo craft Tianzhou 6 ready for launch

Tianzhou 6 docks with Tiangong space station

Tianzhou-5 cargo craft separates from China's space station

Final frontier is no longer alien

EXO WORLDS
How NASA's work led to commercial spaceflight revolution

SpaceX launches 51 Starlink satellites from California

UK gives Viasat clearance to acquire Inmarsat

Virginia Tech, George Mason to develop networking for satellite constellations

EXO WORLDS
Upcoming ISS project will test 3D materials for satellite manufacturing

Great balls of fire! 'Rocket debris' lights up Japan night

General Atomics delivers spacecraft simulator supporting NASA TSIS-2 program

Arianespace to launch the first active debris removal ClearSpace mission with Vega C

EXO WORLDS
Researchers measure the light emitted by a sub-Neptune planet's atmosphere for the first time

Webb looks for Fomalhaut's asteroid belt and finds much more

Webb takes closest look yet at mysterious planet

Astronomers spot benzene in planet-forming disk around star for first time

EXO WORLDS
Pioneer 11, launched 50 years ago, helped solve mysteries of the universe

NASA: Up to 4 of Uranus' moons could have water

New video series captures team working on NASA's Europa Clipper

Work continues to deploy Juice RIME antenna

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.