24/7 Space News
EXO WORLDS
Webb discovers methane, carbon dioxide in atmosphere of K2-18 b
This artist's concept shows what exoplanet K2-18 b could look like based on science data. K2-18 b, an exoplanet 8.6 times as massive as Earth, orbits the cool dwarf star K2-18 in the habitable zone and lies 120 light-years from Earth. A new investigation with NASA's James Webb Space Telescope into K2-18 b has revealed the presence of carbon-bearing molecules including methane and carbon dioxide. The abundance of methane and carbon dioxide, and shortage of ammonia, support the hypothesis that there may be a water ocean underneath a hydrogen-rich atmosphere in K2-18 b. See Spectra of K2-18 b obtained with Webb's NIRISS payload.
Webb discovers methane, carbon dioxide in atmosphere of K2-18 b
by Staff Writers
Baltimore MD (SPX) Sep 12, 2023

A new investigation with NASA's James Webb Space Telescope into K2-18 b, an exoplanet 8.6 times as massive as Earth, has revealed the presence of carbon-bearing molecules including methane and carbon dioxide. Webb's discovery adds to recent studies suggesting that K2-18 b could be a Hycean exoplanet, one which has the potential to possess a hydrogen-rich atmosphere and a water ocean-covered surface.

The first insight into the atmospheric properties of this habitable-zone exoplanet came from observations with NASA's Hubble Space Telescope, which prompted further studies that have since changed our understanding of the system.

K2-18 b orbits the cool dwarf star K2-18 in the habitable zone and lies 120 light-years from Earth in the constellation Leo. Exoplanets such as K2-18 b, which have sizes between those of Earth and Neptune, are unlike anything in our solar system. This lack of equivalent nearby planets means that these 'sub-Neptunes' are poorly understood, and the nature of their atmospheres is a matter of active debate among astronomers.

The suggestion that the sub-Neptune K2-18 b could be a Hycean exoplanet is intriguing, as some astronomers believe that these worlds are promising environments to search for evidence for life on exoplanets.

"Our findings underscore the importance of considering diverse habitable environments in the search for life elsewhere," explained Nikku Madhusudhan, an astronomer at the University of Cambridge and lead author of the paper announcing these results. "Traditionally, the search for life on exoplanets has focused primarily on smaller rocky planets, but the larger Hycean worlds are significantly more conducive to atmospheric observations."

The abundance of methane and carbon dioxide, and shortage of ammonia, support the hypothesis that there may be a water ocean underneath a hydrogen-rich atmosphere in K2-18 b. These initial Webb observations also provided a possible detection of a molecule called dimethyl sulfide (DMS). On Earth, this is only produced by life. The bulk of the DMS in Earth's atmosphere is emitted from phytoplankton in marine environments.

The inference of DMS is less robust and requires further validation. "Upcoming Webb observations should be able to confirm if DMS is indeed present in the atmosphere of K2-18 b at significant levels," explained Madhusudhan.

While K2-18 b lies in the habitable zone, and is now known to harbor carbon-bearing molecules, this does not necessarily mean that the planet can support life. The planet's large size - with a radius 2.6 times the radius of Earth - means that the planet's interior likely contains a large mantle of high-pressure ice, like Neptune, but with a thinner hydrogen-rich atmosphere and an ocean surface. Hycean worlds are predicted to have oceans of water. However, it is also possible that the ocean is too hot to be habitable or be liquid.

"Although this kind of planet does not exist in our solar system, sub-Neptunes are the most common type of planet known so far in the galaxy," explained team member Subhajit Sarkar of Cardiff University. "We have obtained the most detailed spectrum of a habitable-zone sub-Neptune to date, and this allowed us to work out the molecules that exist in its atmosphere."

Characterizing the atmospheres of exoplanets like K2-18 b - meaning identifying their gases and physical conditions - is a very active area in astronomy. However, these planets are outshone - literally - by the glare of their much larger parent stars, which makes exploring exoplanet atmospheres particularly challenging.

The team sidestepped this challenge by analyzing light from K2-18 b's parent star as it passed through the exoplanet's atmosphere. K2-18 b is a transiting exoplanet, meaning that we can detect a drop in brightness as it passes across the face of its host star. This is how the exoplanet was first discovered in 2015 with NASA's K2 mission. This means that during transits a tiny fraction of starlight will pass through the exoplanet's atmosphere before reaching telescopes like Webb. The starlight's passage through the exoplanet atmosphere leaves traces that astronomers can piece together to determine the gases of the exoplanet's atmosphere.

"This result was only possible because of the extended wavelength range and unprecedented sensitivity of Webb, which enabled robust detection of spectral features with just two transits," said Madhusudhan. "For comparison, one transit observation with Webb provided comparable precision to eight observations with Hubble conducted over a few years and in a relatively narrow wavelength range."

"These results are the product of just two observations of K2-18 b, with many more on the way," explained team member Savvas Constantinou of the University of Cambridge. "This means our work here is but an early demonstration of what Webb can observe in habitable-zone exoplanets."

The team's results were accepted for publication in The Astrophysical Journal Letters.

The team now intends to conduct follow-up research with the telescope's MIRI (Mid-Infrared Instrument) spectrograph that they hope will further validate their findings and provide new insights into the environmental conditions on K2-18 b.

"Our ultimate goal is the identification of life on a habitable exoplanet, which would transform our understanding of our place in the universe," concluded Madhusudhan. "Our findings are a promising step towards a deeper understanding of Hycean worlds in this quest."

Related Links
STScI
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EXO WORLDS
Scientists detect and validate the longest-period exoplanet found with TESS
Albuquerque NM (SPX) Sep 04, 2023
Scientists from The University of New Mexico (UNM), and Massachusetts Institute of Technology (MIT) have detected and validated two of the longest-period exoplanets found by TESS to date. These long period large exoplanets orbit a K dwarf star and belong to a class of planets known as warm Jupiters, which have orbital periods of 10-200 days and are at least six times Earth's radius. This recent discovery offers exciting research opportunities for the future of finding long-period planets that resemble t ... read more

EXO WORLDS
Two Russians, American reach space station

NASA joins the still controversial search for UFOs

Rockets and Porsches: rich Russians flock to Baikonur spaceport

Soyuz hatch opens, Expedition 69 expands to 10 crewmates

EXO WORLDS
Marcus Wandt will fly to International Space Station on third Axiom Space mission

SpaceX launches 22 Starlink satellites in 65th mission of 2023

NASA approves crew for Axiom's third private mission to space station

Mini space thruster that runs on water

EXO WORLDS
Dusty Skies in the Cloudy Season: Sols 3950-3952

Sols 3948-3949: A Rocky Road, or Two!

Another Martian Weekend" Sols 3943-3945

Sols 3936-3939: Double the Fun

EXO WORLDS
Tianzhou 5 spacecraft burns up on Earth reentry

Crew of Shenzhou XV mission honored for six-month space odyssey

China solicits names for manned lunar exploration vehicles

From rice to quantum gas: China's targets pioneering space research

EXO WORLDS
Intelsat delivers new reliable broadcast connectivity service

Germany blocks full Chinese takeover of satellite startup

Successful entry into service of Eutelsat Hotbird 13F and 13G satellites

Sidus Space announces 180-Day extension on NASDAQ minimum pricing

EXO WORLDS
China builds new radio telescope to support lunar, deep-space missions

Skyloom and Satellogic sign agreement for Multipath Optical Comms Data Transmission

GMV tests robot for assembly and maintenance of structures in Earth orbit

Sidus contracts with HEO for non-Earth imaging payload data services

EXO WORLDS
Exoplanet with a large iron core adds to puzzle of how planets form

Webb discovers methane, carbon dioxide in atmosphere of K2-18 b

Alleged bodies of 'non-human beings' shown in Mexican Congress

On the road to spotting alien life

EXO WORLDS
Possible existence of Earth-like planet predicted in Outskirts of Solar System

SwRI will lead Hubble, Webb observations of Io, Jupiter's volcanic moon

In the service of planetary science, astrophysics and heliophysics

Mysterious Neptune dark spot detected from Earth for the first time

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.