. 24/7 Space News .
TECH SPACE
WPI team recovers rare earths from electric and hybrid vehicle motors
by Staff Writers
Worcester MA (SPX) Oct 05, 2015


This is Marion Emmert, assistant professor of chemistry, chemical engineering, and mechanical engineering at Worcester Polytechnic Institute, with the drive unit from an all-electric Chevrolet Spark vehicle. She has developed a chemical method for extracting rare earth elements from the unit's magnets. Image courtesy Worcester Polytechnic Institute. For a larger version of this image please go here.

In an effort to help develop a sustainable domestic supply of rare earth elements and lessen the United States' dependence on China for materials that are vital to the production of electronics, wind turbines, and many other technologies, two researchers at Worcester Polytechnic Institute (WPI) have developed a method of extracting rare earths from the drive units and motors of discarded electric and hybrid cars.

With support from WPI's Center for Resource Recovery and Recycling (CR3), Marion Emmert, assistant professor of chemistry, chemical engineering, and mechanical engineering at WPI, and postdoctoral fellow H.M. Dhammika Bandara conduct research at WPI's Gateway Park in a specially equipped laboratory, one of the only such facilities of its kind in the nation.

Working there, the pair has created the novel method for processing drive units and electric motors to chemically separate rare earth elements - specifically neodymium, dysprosium, and praseodymium - from other materials used to make the devices. The goal is to recycle rare earths that would otherwise be lost in a sustainable and efficient manner.

To test the process, the WPI researchers sliced the drive unit (which contains the electric motor and other components of the drive train) of an all-electric Chevrolet Spark vehicle into several pieces and then shredded the pieces.

Using a two-step chemical extraction process, they were able to separate the rare earth elements and also recover other recyclable materials, including steel chips and other useful materials from the drive units.

The researchers say the technology has the potential to be an alternative source of rare earths, which could lessen the need to import these vital elements from China, which currently supply's about 97 percent of rare earths used in manufacturing.

Furthermore, since magnets containing rare earths are used in a wide range of technologies, including electric motors, wind turbines, and medical imaging devices, including MRI scanners - manufacturers would be able to improve the sustainability of their products by recycling these materials.

"The fact that China has the majority of operable separation facilities in the world is a huge problem for the United States," Emmert said. "Large car manufacturers are dependent on the magnets composed of these elements for car production, so it's really critical for rare earth recovery and separation technologies to take hold here."

Emmert also noted that the United States has not invested in rare earth recovery for a long time. "In the last 20 years, the United States has lost knowledge and expertise on how to mine, recover, and separate these materials," said Emmert. "We're hoping that starts to change and that the United States becomes less dependent on foreign countries to recover rare earth elements."

WPI's Intellectual Property and Innovation department has filed a provisional patent on the recovery technology, and is beginning to market the technology in hopes of finding a licensee.

The research dates back to the spring of 2014, when WPI was named the lead institution on a $7.4 million, multi-university award from the U.S. Army that supported the development of new metallurgical methods and new lightweight alloys to help the military build more effective and durable vehicles and systems.

Part of that research explored methods for extracting rare earth elements from ores found outside of China and for recovering those elements from recycled materials.

Emmert and Bandara's article on rare earth recycling, titled Rare Earth Recovery from End-of-Life Motors employing Green Chemistry Design Principles, was recently published in Green Chemistry.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Worcester Polytechnic Institute
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Controlling evaporative patterning transitions
Washington DC (SPX) Oct 02, 2015
Water, soup, wet paint and other liquids often leave stains as they dry. They include "coffee rings" from dried coffee droplets, soup stains on the dining table, and the patterns salted snowmelt lays down on the pavement. Solvents leave a variety of residues as they evaporate from suspensions, including single rings, periodic bands, shapes resembling spider webs, and even wide uniform films asse ... read more


TECH SPACE
Space startup confirms plans for robotic moon landings

Asteroids found to be the moon's main 'water supply'

Russian scientist hope to get rocket fuel, water, oxygen from Lunar ice

NASA's Lunar Reconnaissance Orbiter's Dance with Eclipses

TECH SPACE
Rock samples from Western US teach how to hunt for life on Mars

Students Advance Mars Airplane Concept

Curiosity's Drill Hole and Location are Picture Perfect

Search for Mars life stymied by contamination threat

TECH SPACE
NASA Selects Investigations for Future Key Planetary Mission

Chinese herbal expert among Nobel medicine prize winners

Down to Earth and walking the line

Next stop for the Perlan 2 Glider: The edge of space

TECH SPACE
Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

China's new carrier rocket succeeds in 1st trip

China launches new type of carrier rocket: state media

TECH SPACE
NASA extends Boeing contract for International Space Station

Russian launches cargo spaceship to the ISS

Successful re-entry of H-II Transfer Vehicle Kounotori5

NASA Selects Five New Flight Directors to Lead Mission Control

TECH SPACE
Arianespace signs ARSAT to launch a new satellite for Argentina

Ariane 5 orbits Sky Muster and ARSAT-2

A satellite launcher for the Middle East

45th Space Wing supports ULA's 100th launch

TECH SPACE
The Most Stable Source of Light in the World

Earth-class planets likely have protective magnetic fields, aiding life

Stellar atmosphere can be used to predict the composition of rocky exoplanets

Watching an exoplanet in motion around a distant star

TECH SPACE
Thousand-fold fluorescence enhancement in an all-polymer thin film

Australian broadband satellite begins post-launch maneuvers

ESA entrusts Indra with data storage for the Sentinel 2B satellite

WPI team recovers rare earths from electric and hybrid vehicle motors









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.